

74LV541A Octal Buffer/Line Driver with 3-State Outputs

GENERAL DESCRIPTION

The 74LV541A is an octal buffer/line driver with 3-state outputs, which can accept supply voltage range from 2.0V to 5.5V. The device is the best choice for driving bus lines or buffer memory address registers. The inputs and outputs are placed on opposite sides of the package, making it easier to print circuit board layout.

The device features 3-state control gate consisting of a two-input AND gate with active low inputs. $\overline{OE}1$ and $\overline{OE}2$ are two output enable inputs. When $\overline{OE}1$ and $\overline{OE}2$ are low, data transmits from An inputs to the Yn outputs. When $\overline{OE}1$ or $\overline{OE}2$ is high, all outputs are in high-impedance state.

This device is highly suitable for partial power-down applications using power-off leakage current (IOFF) circuit. When the device is powered down, the current backflow will be prevented from passing through the device.

FUNCTION TABLE

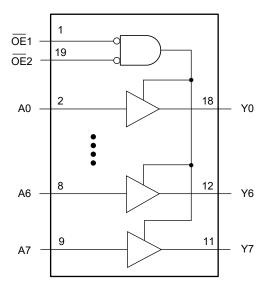
	OUTPUT		
OE1	OE2	An	Yn
Ĺ	Ĺ	Ĺ	L
L	L	Η	Н
Н	X	X	Z
X	Н	X	Z

H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care


FEATURES

- Wide Supply Voltage Range: 2.0V to 5.5V
- All Ports Support Mixed-Mode Voltage Operation
- Support Partial Power-Down Mode
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-20 and TSSOP-20 Packages

APPLICATIONS

Industrial Devices
Servers
Surveillance Cameras
Network Switches
Infotainment

LOGIC DIAGRAM

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LV541A	SOIC-20	-40°C to +125°C	74LV541AXS20G/TR	74LV541AXS20 XXXXX	Tape and Reel, 1500
74LV341A	TSSOP-20	-40°C to +125°C	74LV541AXTS20G/TR	06HXTS20 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances, If you have additional comments or questions, please contact your SGMICRO representative directly.

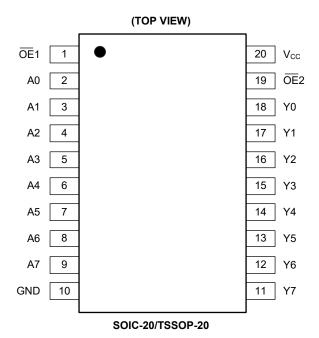
ABSOLUTE MAXIMUM RATINGS (1)

ABOOLOTE III/ BAINIOIII TA ATIMOO
Supply Voltage, V _{CC} 0.5V to 6.5V
Input Voltage, V _I ⁽²⁾ 0.5V to 6.5V
Output Voltage, Vo (2)
High-State or Low-State0.5V to MIN(6.5V, V _{CC} + 0.5V)
3-State or Power-Down Mode0.5V to 6.5V
Input Clamping Current, $I_{IK}(V_I < 0V)$ 20mA
Output Clamping Current, $I_{OK}(V_O < 0V)$ 50mA
Output Current, I _O
High-State35mA
Low-State35mA
Supply Current, I _{CC} 70mA
Ground Current, I _{GND} 70mA
Junction Temperature (3)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM2000V
CDM1000V

RECOMMENDED OPERATING	CONDITIONS
Operating Supply Voltage, V _{CC}	2.0V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, V _O	
High-State or Low-State	0V to V _{CC}
3-State or Power-Down Mode	0V to 5.5V
Output Current, Io	±16mA
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CC} = 2.3V to 2.7V	200ns/V (MAX)
V _{CC} = 3.0V to 3.6V	100ns/V (MAX)
V _{CC} = 4.5V to 5.5V	20ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 19	OE1, OE2	Output Enable Inputs (Active Low).
2, 3, 4, 5, 6, 7, 8, 9	A0, A1, A2, A3, A4, A5, A6, A7	Data Inputs.
18, 17, 16, 15, 14, 13, 12, 11	Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7	Data Outputs.
10	GND	Ground.
20	Vcc	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 2.0V	Full	1.5				
High-Level Input Voltage		V _{CC} = 2.3V to 2.7V	Full	0.7 × V _{CC}			V	
	V _{IH}	V _{CC} = 3.0V to 3.6V	Full	0.7 × V _{CC}			V	
		V _{CC} = 4.5V to 5.5V	Full	1.5 0.7 × V _{CC} 0.7 × V _{CC}				
		V _{CC} = 2.0V	Full			0.5		
Low Lovel Input Voltage	VII	V _{CC} = 2.3V to 2.7V	Full			0.3 × V _{CC}	V	
Low-Level Input Voltage	VIL	V _{CC} = 3.0V to 3.6V	Full			0.3 × V _{CC}	V	
		V _{CC} = 4.5V to 5.5V	Full 1.5 Full 0.7 × V _{CC} Full 0.7 × V _{CC} Full 0.7 × V _{CC} Full Full Full Full Full V _{CC} - 0.05 Full 2.1 Full 2.6 Full 4.0 Full Full Full Full		0.3 × V _{CC}			
	-Level Output Voltage $V_{OH} = \frac{I_{OH} = -2mA, V_{CC} = 2.3}{I_{OH} = -8mA, V_{CC} = 3.0}$ $I_{OH} = -16mA, V_{CC} = 4.0$	I _{OH} = -50μA, V _{CC} = 2.0V to 5.5V	Full	V _{CC} - 0.05	V _{CC} - 0.01			
Lligh Lovel Output Voltage		I _{OH} = -2mA, V _{CC} = 2.3V	Full	2.1	2.23		V	
High-Level Output voltage		$I_{OH} = -8mA, V_{CC} = 3.0V$	Full	2.6	2.81			
		I _{OH} = -16mA, V _{CC} = 4.5V	Full	4.0	4.23			
		$I_{OL} = 50 \mu A$, $V_{CC} = 2.0 V$ to 5.5 V	Full		0.01	0.05		
Low-Level Output Voltage	Vol	I _{OL} = 2mA, V _{CC} = 2.3V	Full		0.05	0.2	V	
Low-Level Output voltage	V _{OL}	I _{OL} = 8mA, V _{CC} = 3.0V	Full		0.18	0.4	V	
		I _{OL} = 16mA, V _{CC} = 4.5V	Full		0.31	0.5		
Input Leakage Current	l _l	$V_I = 5.5V$ or GND, $V_{CC} = 0V$ to $5.5V$	Full		±0.01	±1	μA	
Off-State Output Current	l _{oz}	$V_{\rm O}$ = $V_{\rm CC}$ or GND, $V_{\rm CC}$ = 5.5V	Full		±0.01	±10	μA	
Power-Off Leakage Current	I _{OFF}	V_1 or V_0 = 0V to 5.5V, V_{CC} = 0V	Full		±0.01	±10	μA	
Supply Current	Icc	$V_1 = V_{CC}$ or GND, $I_0 = 0A$, $V_{CC} = 5.5V$	Full		0.01	20	μA	
Input Capacitance	Cı	$V_1 = V_{CC}$ or GND, $V_{CC} = 3.3V$	+25°C		5		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	IONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
		An to Yn,	C _L = 15pF	Full	1	8	12	20
		$V_{CC} = 2.5V \pm 0.2V$	C _L = 50pF	Full	1	9	16	ns
Propagation Delay (2)		An to Yn,	C _L = 15pF	Full	1	6	8.5	200
Propagation Delay	t _{PD}	$V_{CC} = 3.3V \pm 0.3V$	C _L = 50pF	Full	1	7	11	ns
		An to Yn, V _{CC} = 5.0V ± 0.5V	C _L = 15pF	Full	0.5	4	6	
			C _L = 50pF	Full	1	4.5	8	ns
		OEn to Yn, V _{CC} = 2.5V ± 0.2V	C _L = 15pF	Full	1	10	18	20
			C _L = 50pF	Full	1	10.5	22	ns
Enable Time (2)		ŌĒn to Yn,	C _L = 15pF	Full	1	7	12.5	200
Enable Time V	t _{EN}	$V_{CC} = 3.3V \pm 0.3V$	C _L = 50pF	Full	1	7.5	16	ns
		ŌĒn to Yn,	C _L = 15pF	Full	0.5	5.5	8.5	ns
			C _L = 50pF	Full	0.5	6	10.5	

DYNAMIC CHARACTERISTICS (continued)

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at $T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	IONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
		OEn to Yn,	C _L = 15pF	Full	1	14	20	
		$V_{CC} = 2.5V \pm 0.2V$	C _L = 50pF	Full	1	18	25	ns
Disable Time ⁽²⁾		OEn to Yn,	C _L = 15pF	Full	1	11	15	20
Disable Time V	t _{DIS}	$V_{CC} = 3.3V \pm 0.3V$	C _L = 50pF	Full	1	14	19	ns
		OEn to Yn, V _{CC} = 5.0V ± 0.5V	C _L = 15pF	Full	1	6	10	ns
			C _L = 50pF	Full	1	7	12	115
		$V_{CC} = 2.5V \pm 0.2V$	C _L = 50pF	Full		0.5	2	
Channel-to-Channel Skew	t _{sko}	$V_{CC} = 3.3V \pm 0.3V$	C _L = 50pF	Full		0.5	1.5	ns
		$V_{CC} = 5.0V \pm 0.5V$	C _L = 50pF	Full		0.5	1	
Power Dissipation	Power Dissipation Capacitance (3) CPD	C _L = 50pF, f = 10MH	C _L = 50pF, f = 10MHz, V _{CC} = 3.3V			20		pF
Capacitance (3)		C _L = 50pF, f = 10MHz, V _{CC} = 5.0V		+25℃		20		þΓ

NOTES:

- 1. Specified by design and characterization, not production tested.
- 2. tpD is the same as tpLH and tpHL. teN is the same as tpZL and tpZH. tDIS is the same as tpLZ and tpHZ.
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$$

where:

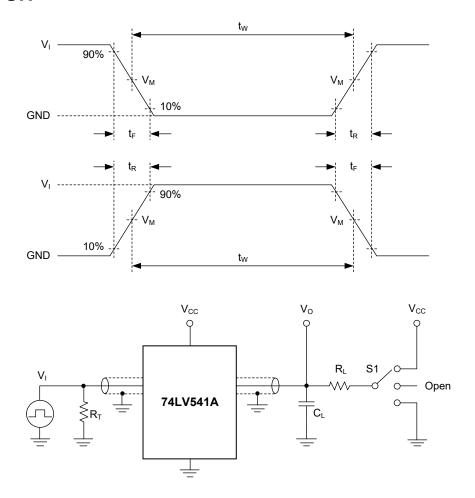
 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.


 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = Sum of the outputs.

NOISE CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, C_L = 50pF, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Maximum Dynamic Low-Level Output Voltage	V_{OLDMAX}	Quiet output	+25°C		0.5		٧
Minimum Dynamic Low-Level Output Voltage	V _{OLDMIN}	Quiet output	+25°C		-0.4		٧
Minimum Dynamic High-Level Output Voltage	V _{OHDMIN}	Quiet output	+25°C		2.9		V
Dynamic High-Level Input Voltage	V_{IHD}		Full	2.31			٧
Dynamic Low-Level Input Voltage	V _{ILD}		Full			0.99	V

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

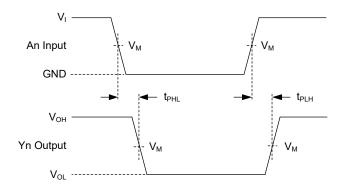

S1: Test selection switch.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INP	INPUT		LOAD		S1 POSITION		
V _{cc}	Vı	t _R , t _F	C _L	R_L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
2.0V to 5.5V	GND to V _{CC}	≤ 2.5ns	15pF, 50pF	1kΩ	Open	V _{CC}	GND	

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (An) to Output (Yn) Propagation Delays

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INP	TUT	OUTPUT			
Vcc	Vı	V_{M} ⁽¹⁾	V _M	V _X	V _Y	
2.0V to 5.5V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.3V	V _{OH} - 0.3V	

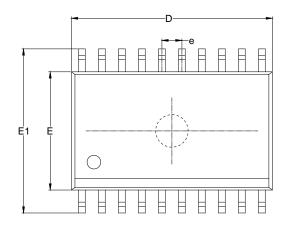
NOTE:

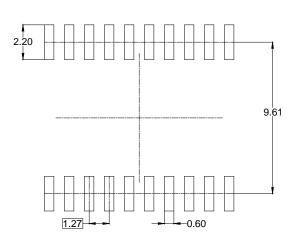
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

74LV541A

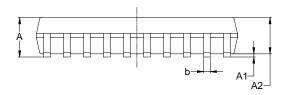
Octal Buffer/Line Driver with 3-State Outputs

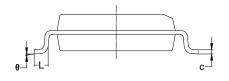
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

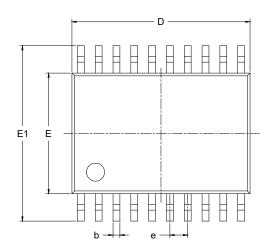

Changes from Original (JULY 2023) to REV.A

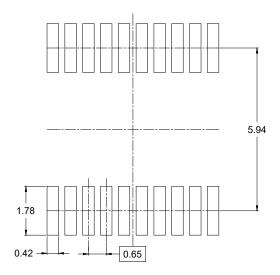
Page

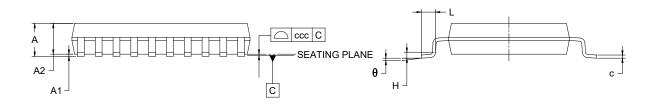



PACKAGE OUTLINE DIMENSIONS SOIC-20

RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	2.350	2.650	0.093	0.104	
A1	0.100	0.300	0.004	0.012	
A2	2.100	2.500	0.083	0.098	
b	0.330	0.510	0.013	0.020	
С	0.204	0.330	0.008	0.013	
D	12.520	13.000	0.493	0.512	
Е	7.400	7.600	0.291	0.299	
E1	10.210	10.610	0.402	0.418	
е	1.27	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

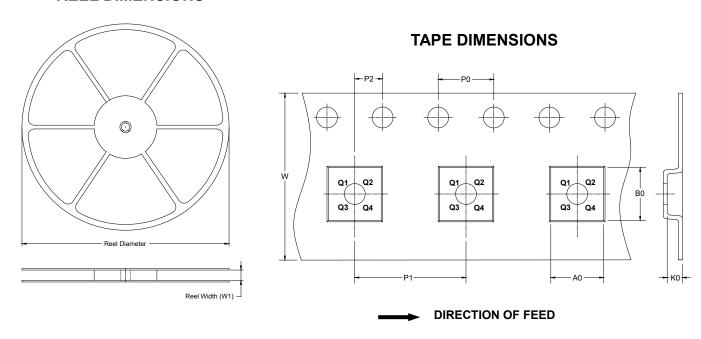

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.


PACKAGE OUTLINE DIMENSIONS

TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

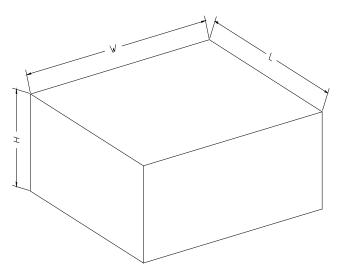
Cumbal	Dimensions In Millimeters					
Symbol	MIN MOD		MAX			
Α	-	-	1.200			
A1	0.050	-	0.150			
A2	0.800	-	1.050			
b	0.190	-	0.300			
С	0.090	-	0.200			
D	6.400	-	6.600			
E	4.300	-	4.500			
E1	6.200	-	6.600			
е	0.650 BSC					
L	0.450	-	0.750			
Н	0.250 TYP					
θ	0°	-	8°			
ccc	0.100					


NOTES:

- 1. Body dimensions do not include mode flash or protrusion.
- This drawing is subject to change without notice.
 Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-20	13"	24.4	10.90	13.30	3.00	4.0	12.0	2.0	24.0	Q1
TSSOP-20	13"	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5