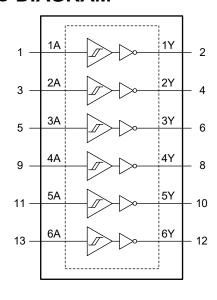


74AHC14Q Automotive, Hex Inverter with Schmitt-Trigger Inputs

GENERAL DESCRIPTION


The 74AHC14Q is a hex inverter with Schmitt-Trigger inputs that is designed for 2.0V to 5.5V V_{CC} operation. The device implments the Boolean function $Y = \overline{A}$.

Each circuit can achieve the function of an independent inverter, but due to the influence of Schmitt-Trigger action, the inverters can provide different positive-going threshold voltage (V_{T+}) and negative-going threshold voltage (V_{T-}).

The device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The 74AHC14Q is available in Green SOIC-14 and TSSOP-14 packages. It operates over an operating temperature range of -40°C to +125°C.

LOGIC DIAGRAM

FEATURES

AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1

 $T_A = -40^{\circ}C$ to +125°C

- Wide Operating Voltage Range: 2.0V to 5.5V
- Inputs Accept Voltages Higher than the Supply Voltage and up to 5.5V
- +8mA/-8mA Output Current
- All Inputs with Schmitt-Trigger
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-14 and TSSOP-14 Packages

APPLICATIONS

Automotive Applications
Synchronize Inverted Clock Inputs
Debounce Switches
Invert Digital Signals

FUNCTION TABLE

INPUT	OUTPUT	
nA	nY	
L	Н	
Н	L	

 $Y = \overline{A}$

H = High Voltage Level

L = Low Voltage Level

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE TOP MARKING	PACKING OPTION
74AHC14Q	SOIC-14	-40°C to +125°C	74AHC14QS14G/TR	16MS14 XXXXX	Tape and Reel, 2500
74AHC14Q	TSSOP-14	-40°C to +125°C	74AHC14QTS14G/TR	16H TS14 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range, V _{CC} 0.5V to 7.0V
Input Voltage Range, V _I ⁽¹⁾ 0.5V to 7.0V
Output Voltage Range, $V_0^{(1)}$ -0.5V to MIN(7.0V, V_{CC} + 0.5V)
Input Clamp Current, I _{IK} (V _I < 0V)20mA
Output Clamp Current, I_{OK} ($V_O < 0V$ or $V_O > V_{CC}$)±20mA
Continuous Output Current, I_0 (V_0 = 0V to V_{CC})±25mA
Continuous Current through V _{CC} or GND±50mA
Junction Temperature (2)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (3) (4)
HBM±4000V
CDM±1000V

NOTES:

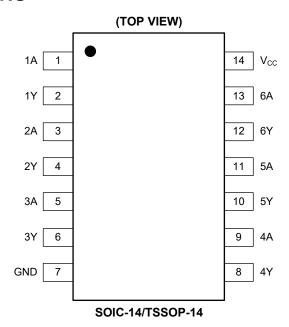
- 1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 3. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
- 4. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.
- 5. Unused input pins must be held at V_{CC} or GND to guarantee the device in normal operation.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	2.0V to 5.5V
Input Voltage Range, V _I (5)	0V to 5.5V
Output Voltage Range, Vo	0V to V _{CC}
Output Current, Io	±8mA
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 3, 5, 9, 11, 13	1A, 2A, 3A, 4A, 5A, 6A	Data Inputs.
2, 4, 6, 8, 10, 12	1Y, 2Y, 3Y, 4Y, 5Y, 6Y	Data Outputs.
7	GND	Ground.
14	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		$V_{CC} = 2.0V, I_{OH} = -50\mu A$	Full	1.9	1.995		
		$V_{CC} = 3.0V, I_{OH} = -50\mu A$	Full	2.9	2.995		
High-Level Output Voltage	V _{OH}	$V_{CC} = 4.5V$, $I_{OH} = -50\mu A$	Full	4.4	4.495		V
		$V_{CC} = 3.0V, I_{OH} = -4mA$	Full	2.6	2.850		
		V _{CC} = 4.5V, I _{OH} = -8mA	Full	4.0	4.250		
		$V_{CC} = 2.0V, I_{OL} = 50\mu A$	Full		0.005	0.1	
	V _{OL}	$V_{CC} = 3.0V, I_{OL} = 50\mu A$	Full		0.005	0.1	
Low-Level Output Voltage		$V_{CC} = 4.5V$, $I_{OL} = 50\mu A$	Full		0.005	0.1	V
		$V_{CC} = 3.0V$, $I_{OL} = 4mA$	Full		0.15	0.4	
		V _{CC} = 4.5V, I _{OL} = 8mA	Full		0.25	0.5	
Input Leakage Current	I _I	$V_{CC} = 0V \text{ to } 5.5V, V_1 = 5.5V \text{ or GND}$	Full		±0.02	±1	μΑ
Supply Current	Icc	$V_{CC} = 5.5V$, $V_I = V_{CC}$ or GND, $I_O = 0A$	Full		0.02	20	μΑ
Input Capacitance	Cı	$V_{CC} = 5.0V$, $V_{I} = V_{CC}$ or GND	+25°C		4		pF

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and 5.0V respectively, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN (1)	TYP	MAX (1)	UNITS
		$V_{CC} = 3.3V \pm 0.3V,$	C _L = 15pF	Full	0.5	4.4	8.7	
Law to High Propagation Dalay		see Figure 2	C _L = 50pF	Full	1.0	6.7	14.1	ns
Low-to-High Propagation Delay t _{Pl}	t _{PLH}	$V_{CC} = 5.0V \pm 0.5V,$	C _L = 15pF	Full	0.5	3.2	6.0	
		see Figure 2	C _L = 50pF	Full	0.5	4.6	9.0	
High-to-Low Propagation Delay		V _{CC} = 3.3V ± 0.3V, see Figure 2	C _L = 15pF	Full	0.5	4.1	8.1	
			C _L = 50pF	Full	1.0	5.7	10.5	200
	t _{PHL}	V _{CC} = 5.0V ± 0.5V, see Figure 2	C _L = 15pF	Full	0.5	3.1	5.7	ns
			C _L = 50pF	Full	0.5	4.3	7.6	
Power Dissipation Capacitance (2)	C_{PD}	V_{CC} = 5.0V, no load, f_i =	V _{CC} = 5.0V, no load, f _i = 1MHz			8		pF

NOTES:

1. Specified by design and characterization, not production tested.

2. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$

where:

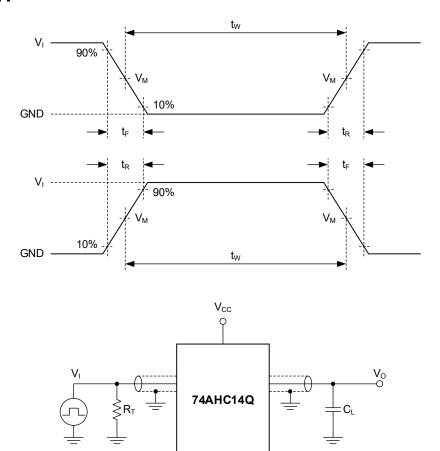
 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.


 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of the outputs.

TRANSFER CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		V _{CC} = 3.0V	Full	1.20	1.85	2.20	
Positive-Going Threshold Voltage	V_{T+}	V _{CC} = 4.5V	Full	1.75	2.65	3.15	V
		V _{CC} = 5.5V	Full	2.15	3.15	3.85	
Negative-Going Threshold Voltage	V _T .	V _{CC} = 3.0V	Full	0.90	1.25	1.90	
		V _{CC} = 4.5V	Full	1.35	1.90	2.75	V
		V _{CC} = 5.5V	Full	1.65	2.30	3.35	
		V _{CC} = 3.0V	Full	0.25	0.60	1.20	
Hysteresis Voltage	V_{H}	V _{CC} = 4.5V	Full	0.35	0.75	1.40	V
		V _{CC} = 5.5V	Full	0.45	0.85	1.60	

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

C_L: Load capacitance (includes jig and probe).

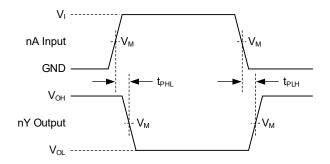

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD	TEST
V _{CC}	Vı	t _R , t _F	CL	TEST
2.0V to 5.5V	V _{cc}	≤ 3.0ns	15pF, 50pF	t _{PHL} , t _{PLH}

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nA) to Output (nY) Propagation Delay Times

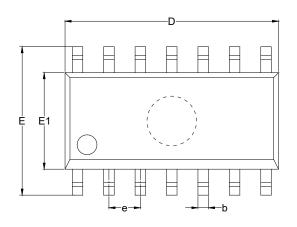
Table 2. Measurement Points

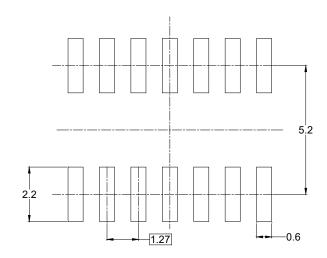
SUPPLY VOLTAGE	INF	OUTPUT	
Vcc	Vı	V _M ⁽¹⁾	V _M
2.0V to 5.5V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}

NOTE:

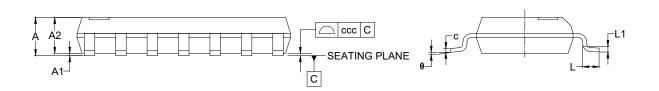
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

REVISION HISTORY

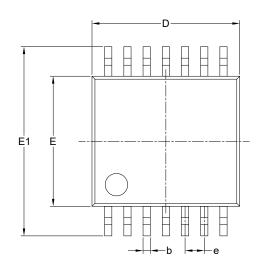

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

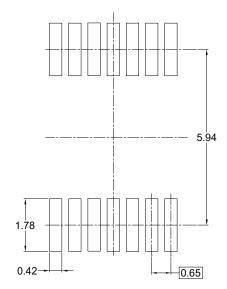

Changes from Original (DECEMBER 2024) to REV.A

Page

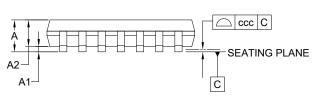


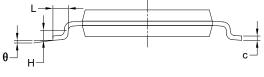
PACKAGE OUTLINE DIMENSIONS SOIC-14


RECOMMENDED LAND PATTERN (Unit: mm)

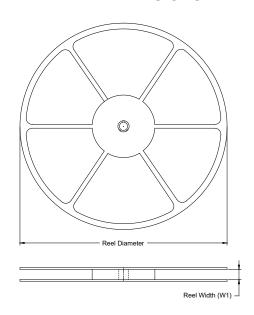


Symbol	Dimensions In Millimeters					
Symbol	MIN NOM		MAX			
Α	-	-	1.750			
A1	0.100	-	0.250			
A2	1.250	-	-			
b	0.310	-	0.510			
С	0.100	-	0.250			
D	8.450	-	8.850			
E	5.800	-	6.200			
E1	3.800	-	4.000			
е		1.270 BSC				
L	0.400	-	1.270			
L1	0.250 TYP					
θ	0°	-	8°			
ccc		0.100				

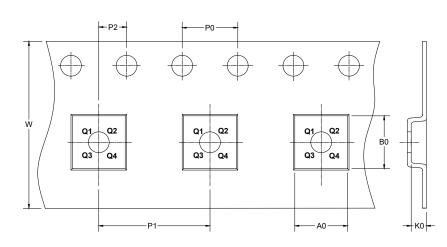

- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MS-012.


PACKAGE OUTLINE DIMENSIONS TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	Dimensions In Millimeters					
Symbol	MIN	NOM	MAX			
Α	-	-	1.200			
A1	0.050	-	0.150			
A2	0.800	-	1.050			
b	0.190	-	0.300			
С	0.090	-	0.200			
D	4.860	-	5.100			
E	4.300	-	4.500			
E1	6.200	-	6.600			
е		0.650 BSC				
L	0.450	-	0.750			
Н	0.250 TYP					
θ	0°	-	8°			
ccc	0.100					

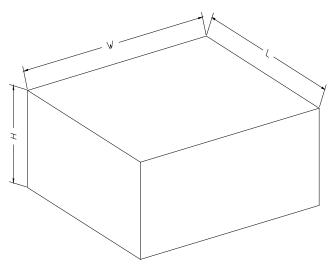
NOTES


- 1. This drawing is subject to change without notice.
- 2. The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1
TSSOP-14	13"	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5