

5.5V, 2A, $30m\Omega$ R_{DSON} Load Switch with Reverse Current Protection

SGM2575S

GENERAL DESCRIPTION

The SGM2575S is a single load switch with reverse current protection and controlled turn-on. The device can operate from 1.2V to 5.5V single supply and has the ability to drive up to 2A continuous current.

The device contains a $30m\Omega$ low R_{DSON} N-MOSFET controlled by the ON pin. During power-up, a smart pull-down resistor is used to avoid the ON pin floating. Once the ON pin reaches a high voltage (> VIH), the smart pull-down resistor is disconnected, which reduces the standby current and power loss. The small package and low R_{DSON} make the device very suitable for space limited, battery powered applications.

The device supports a wide input voltage range, which is suitable for different voltage rails. The rise time is used to avoid inrush current. The SGM2575SAD offers the quick output discharge function in disabled status.

The SGM2575S is available in a Green WLCSP-0.76×0.76-4B package.

FEATURES

Input Voltage Range: 1.2V to 5.5V
Maximum Continuous Current: 2A

Low On-Resistance

• R_{DSON} = 30mΩ at V_{IN} = 5.5V

R_{DSON} = 30mΩ at V_{IN} = 3.3V

• $R_{DSON} = 48m\Omega$ at $V_{IN} = 1.2V$

• Low Shutdown Current: 0.15µA (TYP)

Low Quiescent Current: 0.23µA (TYP)

• Reverse Current Protection When Disabled

• Low Threshold 1.2V GPIO Control Input

Smart ON

• Rise Time: 160µs (TYP) SGM2575SAD Only

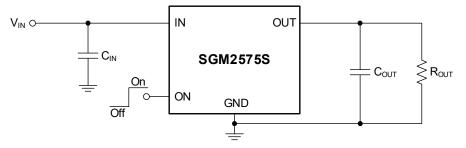
Quick Output Discharge (SGM2575SAD Only)

• Available in a Green WLCSP-0.76×0.76-4B Package

APPLICATIONS

Mobile Phone

Ultrabook


Tablet PC

Digital Camera

Wearable Technology

Solid State Drive

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2575SA	WLCSP-0.76×0.76-4B	-40°C to +125°C	SGM2575SAYG/TR	X 01	Tape and Reel, 4000
SGM2575SAD	WLCSP-0.76×0.76-4B	-40°C to +125°C	SGM2575SADYG/TR	X 00	Tape and Reel, 4000

MARKING INFORMATION

NOTE: X = Date Code.

X — Date Code - Quarter **YY**

Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Input Voltage Range, V _{IN}	0.3V to 6V
Output Voltage Range, V _{OUT}	0.3V to 6V
ON Pin Voltage Range, Von	0.3V to 6V
Maximum Continuous Switch Current, I _{MAX} .	2A
Package Thermal Resistance	
WLCSP-0.76×0.76-4B, θ _{JA}	221°C/W
WLCSP-0.76×0.76-4B, θ _{JB}	82.6°C/W
WLCSP-0.76×0.76-4B, θ _{JC}	92.9°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility (1)(2)	
HBM	±3000V
CDM	±1000V

NOTES:

- 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

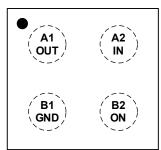
RECOMMENDED OPERATING CONDITIONS

Input Voltage Range, V _{IN}	1.2V to 5.5V
Output Voltage Range, V _{OUT}	0V to 5.5V
ON Pin Input High Voltage, V _{IH}	0.71V to 5.5V
ON Pin Input Low Voltage, V _{IL}	0V to 0.3V
Operating Junction Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

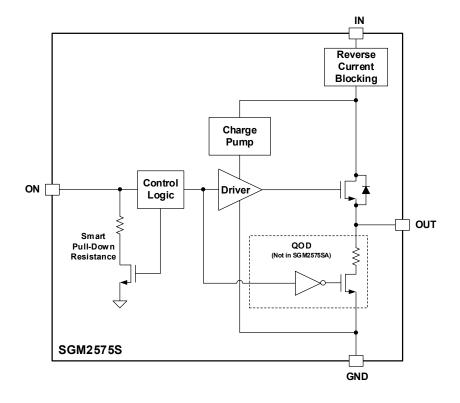

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

(TOP VIEW)



WLCSP-0.76×0.76-4B

PIN DESCRIPTION

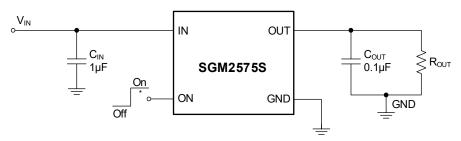
PIN	NAME	FUNCTION
A1	OUT	Switch Output.
A2	IN	Switch Input. It is recommended to use a bypass capacitor (ceramic) to ground.
B1	GND	Ground.
B2	ON	Switch Control Input. Setting the ON pin to a high logic level enables the device, and setting it to a low logic level disables the device.

FUNCTIONAL BLOCK DIAGRAM

SGM2575S

ELECTRICAL CHARACTERISTICS

(For SGM2575SAD only, T_J = -40°C to +125°C, V_{IN} = 1.2V to 5.5V, C_{IN} = 1 μ F, C_{OUT} = 0.1 μ F, typical values are at T_J = +25°C, unless otherwise noted.)


PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}			1.2		5.5	V
UVLO Threshold, Rising		T _J = -40°C to +125°C			0.94	1.26	V
OVEO Trireshold, Rising	V_{UVLO_R}	$T_J = -20^{\circ}C$ to -	+125°C			1.19	V
UVLO Hysteresis	$V_{\text{UVLO_HYS}}$				100		mV
		V _{IN} = 5.5V, V _{ON}	_N = 1.2V, I _{OUT} = 0mA		0.57	1.5	
Quiescent Current	I_{Q}	V _{IN} = 3.3V, V _{ON}	_N = 1.2V, I _{OUT} = 0mA		0.37	1.1	μA
		V _{IN} = 1.2V, V _{ON}	_N = 1.2V, I _{OUT} = 0mA		0.23	0.8	
Shutdown Current		V _{IN} = 5.5V,	$T_J = -40^{\circ}C \text{ to } +85^{\circ}C$		0.15	0.5	μА
Shutdown Current	I _{SD}	$V_{ON} = 0V$	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$		0.15	1.2	
Supply Leakage Current in Shutdown	I _{LEAKAGE}	$V_{IN} = 5.5V,$ $V_{ON} = 0V,$ $V_{OUT} = 0V$	$T_J = -40^{\circ}C \text{ to } +85^{\circ}C$		0.15	0.5	μА
Mode			$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$		0.15	1.2	
		V _{IN} = 5.5V, V _{ON} = 1.2V, I _{OUT} = -200mA			30	63	
On-Resistance	R_{DSON}	V _{IN} = 3.3V, V _{ON} = 1.2V, I _{OUT} = -200mA			30	63	mΩ
		V _{IN} = 1.2V, V _{ON} = 1.2V, I _{OUT} = -200mA			48		
ON Pin Leakage Current	I _{ON}	V _{ON} = 3.3V			10	900	nA
Reverse Current When Disabled	I _{RC}	$V_{IN} = V_{ON} = 0V$, V _{OUT} = 5V		10	900	nA
Output Pull-Down Resistance	R_{PD}	V _{IN} = 3.3V, V _{ON}	N = 0V, I _{OUT} = 1mA		230	300	Ω
Smart Pull-Down Resistance	R _{PD_ON}	Disabled			1		ΜΩ
ON Pin Input High Voltage	V_{IH}			0.71			V
ON Pin Input Low Voltage	V _{IL}					0.3	V
True Reverse Current Blocking		•		•	•		•
RCB Protection Trip Point	V _{T_RCB}	V _{OUT} - V _{IN}		6	24	50	mV
RCB Hysteresis	V _{RCB_HYS}				30		mV

SWITCHING CHARACTERISTICS

(For SGM2575SAD only, T_J = -40°C to +125°C, V_{IN} = 1.2V to 5.5V, C_{IN} = 1 μ F, C_{OUT} = 0.1 μ F, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
Turn-On Time	t _{on}	V _{IN} = 3.3V		350	900	μs
Turn-Off Time	t _{OFF}	V _{IN} = 3.3V		6		μs
V _{OUT} Rise Time	t _R	V _{IN} = 3.3V		160	770	μs
V _{OUT} Fall Time	t _F	V _{IN} = 3.3V		3		μs
Delay Time	t _D	V _{IN} = 3.3V		320	850	μs

PARAMETER MEASUREMENT INFORMATION

*: Rise and fall times of the control signal are 100ns.

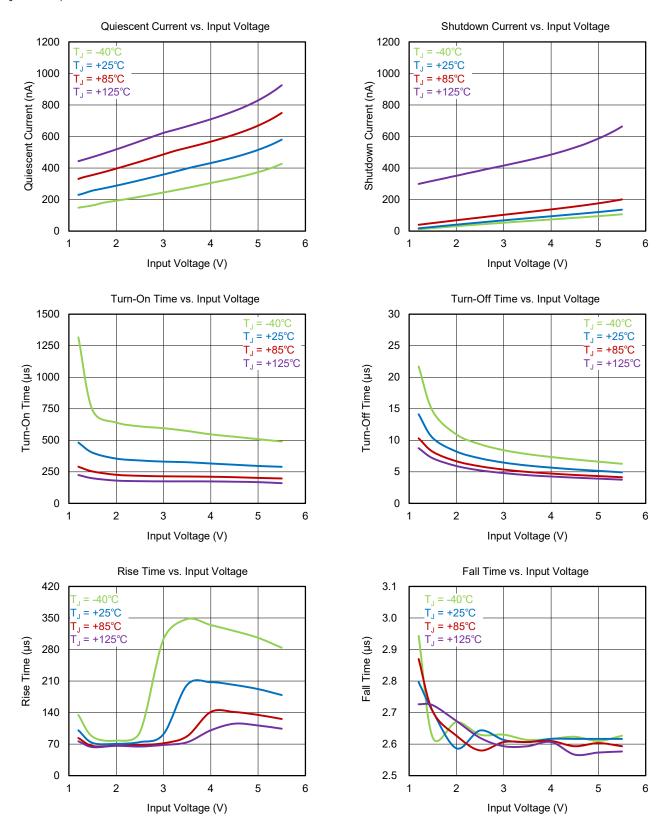
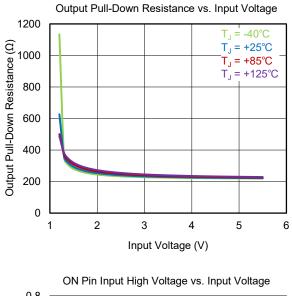
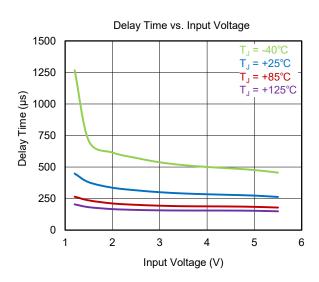
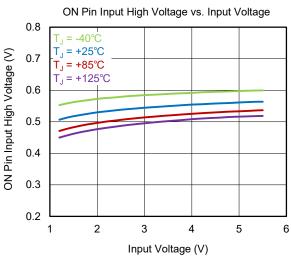
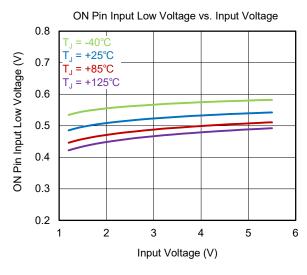

Figure 2. Test Circuit

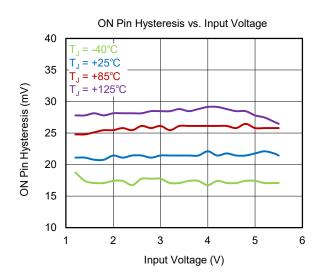
Figure 3. Timing Waveforms

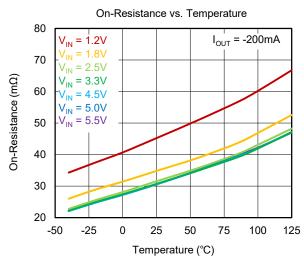

TYPICAL PERFORMANCE CHARACTERISTICS


 $T_J = +25$ °C, unless otherwise noted.




TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 T_J = +25°C, unless otherwise noted.



DETAILED DESCRIPTION

The SGM2575S is a small, 4-ball, 2A load switch. A low on-resistance N-MOSFET is integrated, which makes a low voltage drop across the device. To choose suitable rise time is always used to avoid inrush current.

Quick Output Discharge (SGM2575SAD Only)

The quick output discharge (QOD) feature is available for SGM2575SAD. For SGM2575SAD, if the ON pin is pulled low, a discharge resistor of 230Ω (TYP) is connected between OUT and GND pins to prevent the output from floating when the switch is disabled.

Control Pin

The ON pin can control the device. Setting the ON pin to a high logic level enables the device, and setting it to a low logic level disables the device. It has the ability to interface with low-voltage GPIO. It can support with 1.2V, 1.8V, 2.5V, 3.3V GPIOs.

Table 1. Smart ON Functional Modes

ON	ON Pin
Below V _{IL}	Pull-Down Active
Above V _{IH}	No Pull-Down

APPLICATION INFORMATION

SGM2575S is a single channel, up to 2A current capability load switch with low on-resistance. The device has a wide input range, which can be used in different terminal equipment to set power sequence, reduce inrush current and maintain low standby leakage current. The typical application circuit of SGM2575S is shown in Figure 4.

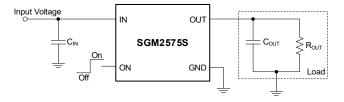
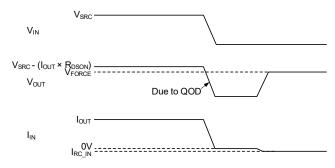


Figure 4. Typical Application Circuit

Input Capacitor

A $1\mu F$ input capacitor (C_{IN}) is recommended to use between IN and GND close to the device pins. It can limit the voltage drop on the input supply. Larger C_{IN} can reduce voltage dip in high current applications.


Output Capacitor

A 1 μ F output capacitor (C_{OUT}) should be placed between OUT and GND as close to the device pins as possible. This capacitor will prevent parasitic board inductances from forcing V_{OUT} below GND when the switch is shutdown.

APPLICATION INFORMATION (continued)

Reverse Current Protection

The reverse current protection function is activated when V_{OUT} is higher than V_{IN} by $V_{\text{T_RCB}}$. The reverse current protection is enabled whether the ON pin is high or low. This function prevents the current flowing from OUT to IN, and is very useful when SGM2575S is disabled and the output needs to be driven by another voltage source.

NOTE: V_{SRC} is the input power supply to the equipment. V_{FORCE} is the external power source forced at OUT pin. I_{IN} is the current of IN pin. I_{OUT} is output load current.

Figure 5. Reverse Current Protection

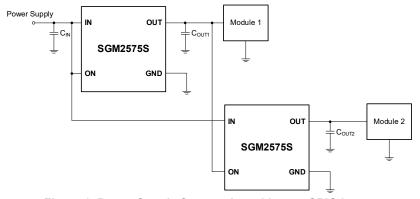
Figure 5 shows how the reverse current protection circuit is activated in SGM2575S. When V_{IN} is turned off, the device is shut down and an external voltage (V_{FORCE}) is forced to OUT pin, the reverse current is tested very small given by $I_{\text{RC_IN}}$. This will prevent any large extra current flowing from the V_{FORCE} (added on V_{OUT}) to V_{IN} .

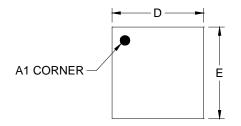
Power Supply Recommendations

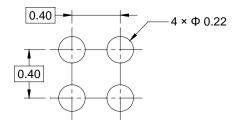
The SGM2575S is designed for a wide operate input voltage range of 1.2V to 5.5V. Place a 1µF input bypass capacitor close to the device terminal is recommended.

Power Supply Sequencing without a GPIO Input

In many terminal devices, each module needs to be powered up in a pre-determined manner. SGM2575S can set a power sequence by the t_{DELAY} without extra GPIO, and may reduce inrush current. Figure 6 shows the sequence that the ON pin of first load switch is tied to the IN, and the second load switch ON pin is tied to the OUT of first load switch. The second load switch is powered up when the first load switch is turned on, this is the fixed sequence and the delay time set by default t_{DELAY} .

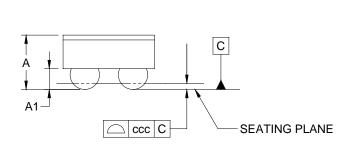


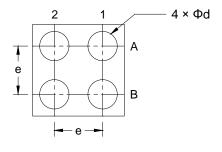

Figure 6. Power Supply Sequencing without a GPIO Input


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JULY 2025 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	4
Updated Application Information section	8
Changes from Original (JUNE 2025) to REV.A	Page
Changed from product preview to production data	All

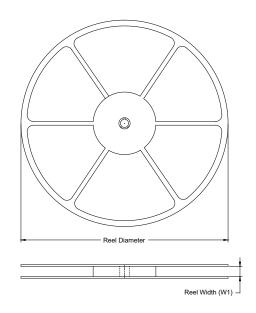

PACKAGE OUTLINE DIMENSIONS WLCSP-0.76×0.76-4B



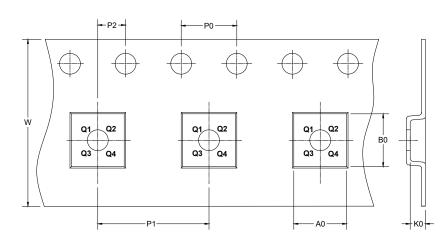
TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

SIDE VIEW


BOTTOM VIEW

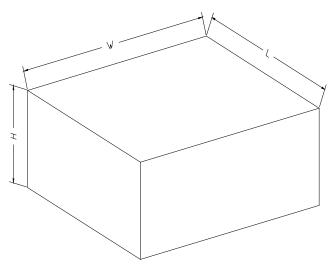
Cymbal	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
Α	-	-	0.488				
A1	0.152	-	0.192				
D	0.730	-	0.790				
E	0.730	-	0.790				
d	0.213	-	0.273				
е	0.400 BSC						
ccc	0.050						


NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-0.76×0.76-4B	7"	9.5	0.84	0.84	0.54	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18