

SGM48754X Quad SPST CMOS Analog Switch

GENERAL DESCRIPTION

The SGM48754X is a quad, SPST (single-pole/single -throw), CMOS analog switch. It operates from 2.5V to 5.5V single power supply and all digital inputs support 1.8V logic control.

Other features include low voltage, low on-resistance and low off-leakage current. The high performances make it very suitable for multiple applications, such as cellular phones, audio and video signal routing, etc.

The SGM48754X is available in Green SOIC-14 and TSSOP-14 packages. It operates over an ambient temperature range of -40° C to $+125^{\circ}$ C.

APPLICATIONS

Automotive Portable Equipment Sample-and-Hold Circuits Data-Acquisition Systems Battery-Powered Systems Audio and Video Signal Routing

FEATURES

- Single Supply Voltage Range: 2.5V to 5.5V
- On-Resistance: 27Ω (TYP) with 5V Supply
- "T" Type Switch
- 1.8V Logic Compatible
- Low On-Resistance Flatness
- High Off-Isolation: -72dB (R_L = 50Ω, f = 1MHz)
- Low Off-Leakage Current: ±1µA (MAX)
- Low On-Leakage Current: ±1µA (MAX)
- Low Distortion: 0.33% (R_L = 600Ω, f = 20Hz to 20kHz)
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-14 and TSSOP-14 Packages

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
0004407547	SOIC-14	-40°C to +125°C	SGM48754XS14G/TR	SGM48754XS14 XXXXX	Tape and Reel, 2500
SGM48754X	TSSOP-14	-40°C to +125°C	SGM48754XTS14G/TR	SGM48754 XTS14 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. **SOIC-14/TSSOP-14**

Vendor Code Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V_{CC} to GND0.3V to 6V
Voltage into Any Terminal $^{(1)}$
Continuous Current into Any Terminal±20mA
Peak Current (Pulsed at 1ms, 10% duty cycle)±40mA
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
CDM

NOTE:

1. Internal diodes will clamp the voltage on any signal that is lower than GND. Limit the current through the forward diode to the maximum ratings.

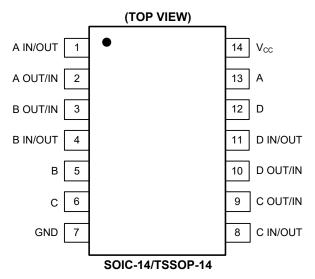
RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2.5V to 5.5V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	A IN/OUT	Switch A Input/Output Pin.
2	A OUT/IN	Switch A Output/Input Pin.
3	B OUT/IN	Switch B Output/Input Pin.
4	B IN/OUT	Switch B Input/Output Pin.
5	В	Switch B Control Pin.
6	С	Switch C Control Pin.
7	GND	Ground.
8	C IN/OUT	Switch C Input/Output Pin.
9	C OUT/IN	Switch C Output/Input Pin.
10	D OUT/IN	Switch D Output/Input Pin.
11	D IN/OUT	Switch D Input/Output Pin.
12	D	Switch D Control Pin.
13	А	Switch A Control Pin.
14	Vcc	Positive Analog and Digital Supply Voltage Input Pin.

NOTE:

Any input pin can be used as an output pin, and any output pin can also be used as an input pin. Signal transmission in both directions is equally well.

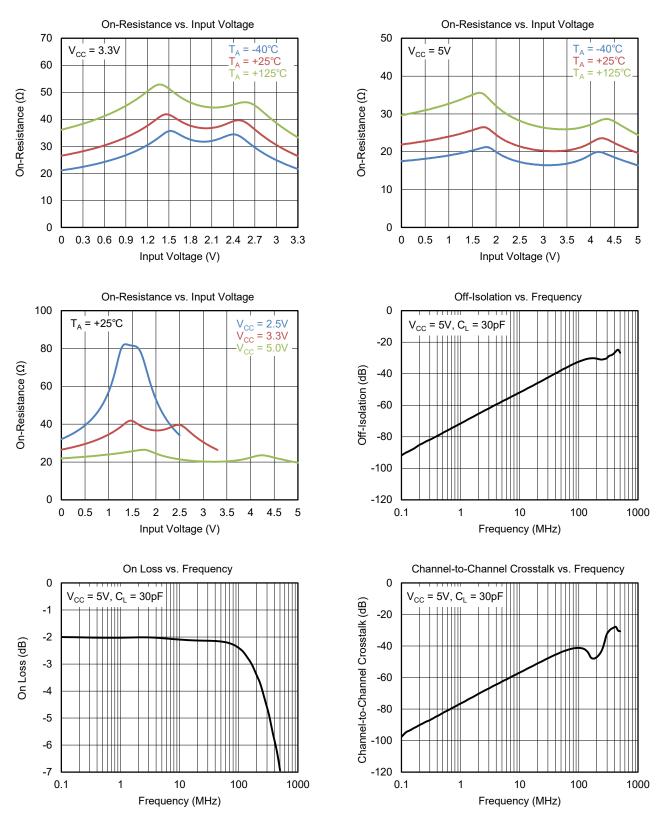
FUNCTION TABLE

SELECT INPUTS	SWITCH STATUS		
A/B/C/D	SWITCH STATUS		
Н	All Switches Close		
L	All Switches Open		

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V, Full = -40°C to +125°C, x = A, B, C and D switch in/out or out/in, typical values are at T_A = +25°C, unless otherwise noted.)

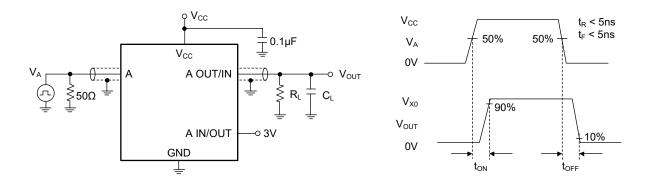
PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Analog Switch							
Analog Signal Range	V _{X_} , V _X		Full	GND		Vcc	V
On Basistanas	Р	$\lambda = E \lambda \lambda = 0 \lambda = 0$	+25℃		27	35	Ω
On-Resistance	R _{ON}	$V_{CC} = 5V$, $V_I = 0V$ to V_{CC} , $I_X = 1mA$	Full			45	
On-Resistance Match between	٨D	$V_{CC} = 5V, V_1 = 0V \text{ to } V_{CC}, I_X = 1\text{mA}$	+25°C		0.6	3.5	Ω
Channels	ΔR_{ON}	$v_{\rm CC} = 5v, v_{\rm I} = 0v$ to $v_{\rm CC}, v_{\rm X} = 100$	Full			4	12
On-Resistance Flatness	Р	$V_{CC} = 5V$, $V_1 = 0V$ to V_{CC} , $I_X = 1mA$	+25°C		7	12	Ω
	R _{FLAT(ON)}		Full			17	12
X_Off Leakage Current	I _{X_(OFF)}	$V_{CC} = 5V, V_X = 0V, V_X = 5V,$ or $V_X = 5V, V_X = 0V$	Full		±0.01	±1	μA
X Off Leakage Current	I _{X(OFF)}	$V_{cc} = 5V, V_X = 0V, V_X = 5V,$ or $V_X = 5V, V_X = 0V$	Full		±0.01	±1	μΑ
On Leakage Current	I _{ON}	$V_{CC} = 5V, V_X = 5V, 0V$	Full		±0.01	±1	μA
Digital I/O							
Logic Input Logic Threshold High	V _{AH} , V _{BH} , V _{CH} ,V _{DH}		Full	1.8			V
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{CL} , V _{DL}					0.5	V
Input-Current High	I _{AH} , I _{BH} , I _{CH} , I _{DH}	$V_A, V_B, V_C, V_D = V_{CC}$			±0.01	±1	μA
Input-Current Low	I _{AL} , I _{BL} , I _{CL} , I _{DL}	V_A , V_B , V_C , $V_D = 0V$	Full		±0.01	±1	μA
Dynamic Characteristics					•		
Propagation Delay Time	t _{PD}	$R_L = 300\Omega, C_L = 35pF$	Full	0.1	1	3	ns
Turn-On Time	t _{on}	$V_{X_{-}}$ = 3V, R _L = 300 Ω , C _L = 35pF, Test Circuit 1	Full	10	35	85	ns
Turn-Off Time	t _{OFF}	$V_{X_{-}}$ = 3V, R _L = 300 Ω , C _L = 35pF, Test Circuit 1	Full	30	70	110	ns
Charge Injection	Q	$R_s = 0\Omega$, $C_L = 1nF$, Test Circuit 2	+25°C		1.5		рС
Input Off-Capacitance	C _{X_(OFF)}	$V_{X_{-}}$ = 0V, f = 1MHz, Test Circuit 3	+25°C		15		pF
Output Off-Capacitance	C _{X(OFF)}	$V_X = 0V$, f = 1MHz, Test Circuit 3	+25°C		12		pF
Output On-Capacitance	C _{X(ON)}	$V_{X_{-}}$ = 0V, f = 1MHz, Test Circuit 3	+25°C		18		pF
Off-Isolation	O _{ISO}	$R_L = 50\Omega$, $C_L = 30pF$, f = 1MHz, Test Circuit 4	+25°C		-72		dB
-3dB Bandwidth	BW	$R_L = 50\Omega$, $C_L = 30pF$, Test Circuit 5	+25°C		290		MHz
Channel-to-Channel Crosstalk	X _{TALK}	f = 1MHz, C_L = 30pF, Test Circuit 6	+25°C		-75		dB
Total Harmonic Distortion	THD	R_L = 600 Ω , V_I = 5 V_{P-P} , f = 20Hz to 20kHz	+25°C		0.33		%
Power Supply							
Power Supply Range	V _{cc}		Full	2.5		5.5	V
Power Supply Current	I _{CC}	$V_{CC} = 5V, V_A, V_B, V_C, V_D = V_{CC} \text{ or } 0V$	Full		±0.01	±1	μA

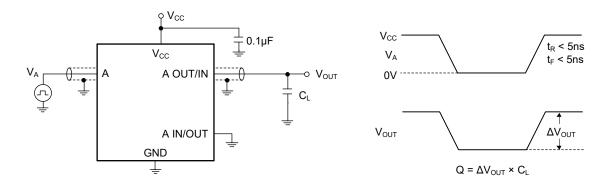

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 3.3V, Full = $-40^{\circ}C$ to $+125^{\circ}C$, x = A, B, C and D switch in/out or out/in, typical values are at T_A = $+25^{\circ}C$, unless otherwise noted.)

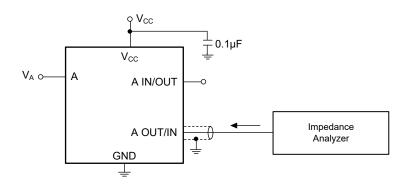
PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Analog Switch					•			
Analog Signal Range	V _{X_} , V _X		Full	GND		V _{cc}	V	
On-Resistance	R _{on}	$V_{CC} = 3.3V, V_1 = 0V$ to $V_{CC}, I_x = 1mA$	+25°C		43	60	Ω	
On-Resistance	NON	$v_{CC} = 3.3v, v_1 = 0v to v_{CC}, v_2 = 100$	Full			72		
On-Resistance Match between	ΔR _{on}	$V_{CC} = 3.3V, V_1 = 0V$ to $V_{CC}, I_x = 1mA$	+25°C		0.7	3.5	- Ω	
Channels	AINON	$v_{CC} = 3.3v, v_1 = 0v to v_{CC}, v_2 = 100$	Full			4	32	
On-Resistance Flatness	R _{FLAT(ON)}	$V_{CC} = 3.3V, V_1 = 0V$ to $V_{CC}, I_x = 1mA$	+25℃		16	26	Ω	
	FLAT(ON)		Full			29	52	
X_Off Leakage Current	I _{X_(OFF)}	$V_{CC} = 3.3V, V_X = 0V, V_X = 3.3V,$ or $V_X = 3.3V, V_X = 0V$	Full		±0.01	±1	μA	
X Off Leakage Current	I _{X(OFF)}	$V_{CC} = 3.3V, V_X = 0V, V_X = 3.3V,$ or $V_X = 3.3V, V_X = 0V$			±0.01	±1	μA	
On Leakage Current	akage Current I_{ON} $V_{CC} = 3.3V, V_X = 3.3V, 0V$		Full		±0.01	±1	μA	
Digital I/O								
Logic Input Logic Threshold High	V _{AH} , V _{BH} , V _{CH} , V _{DH}		Full	1.7			V	
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{CL} , V _{DL}		Full			0.4	V	
Input-Current High	I _{AH} , I _{BH} , I _{CH} I _{DH}	V_A , V_B , V_C , $V_D = V_{CC}$	Full		±0.01	±1	μA	
Input-Current Low	I _{al} , I _{bl} , I _{cl} I _{dl}	$V_A, V_B, V_C, V_D = 0V$	Full		±0.01	±1	μA	
Dynamic Characteristics								
Propagation Delay Time	t _{PD}	R _L = 300Ω, C _L = 35pF	Full	0.1	1.2	5	ns	
Turn-On Time	t _{on}	$V_{X_{-}}$ = 3V, R_{L} = 300 $\Omega,$ C_{L} = 35pF, Test Circuit 1	Full	15	65	180	ns	
Turn-Off Time	t _{OFF}	$V_{X_{-}}$ = 3V, R _L = 300 Ω , C _L = 35pF, Test Circuit 1	Full	40	105	210	ns	
Charge Injection	Q	$R_s = 0\Omega, C_L = 1nF$, Test Circuit 2	+25°C		0.7		рС	
-3dB Bandwidth	BW	R_L = 50 Ω , C_L = 30pF, Test Circuit 5	+25°C		290		MHz	
Power Supply								
Power Supply Current	I _{cc}	V_A , V_B , V_C , $V_D = V_{CC}$ or $0V$	Full		±0.01	±1	μA	

TYPICAL PERFORMANCE CHARACTERISTICS

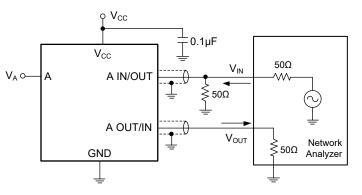

 T_A = +25°C, unless otherwise noted.


SG Micro Corp

SGM48754X


TEST CIRCUITS

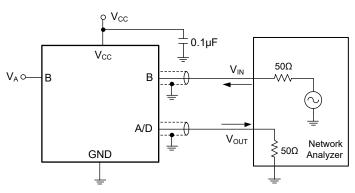
Test Circuit 1. Switching Times (ton, toff)



Test Circuit 3. Capacitance



TEST CIRCUITS (continued)


Off-Isolation = $20\log(V_{OUT}/V_{IN})$ Measured between A/B/C/D OUT/IN and "OFF" A/B/C/D IN/OUT Terminal on Each Switch.

Test Circuit 4. Off-Isolation

On Loss = 20log(V_{OUT}/V_{IN}) Measured between A/B/C/D OUT/IN and "ON" A/B/C/D IN/OUT Terminal on Each Switch.

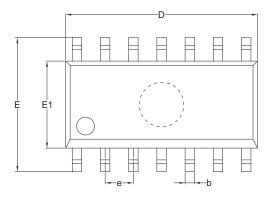
Test Circuit 5. On Loss

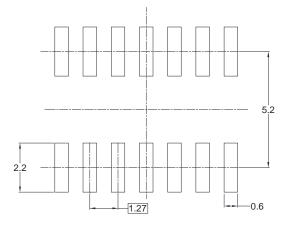
 $\label{eq:channel-to-Channel Crosstalk = 20log(V_{OUT}/V_{IN}) \\ \mbox{Measured from One Channel (A/B/C/D OUT/IN) to All other Channels.} \\$

Test Circuit 6. Channel-to-Channel Crosstalk

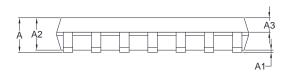
Page

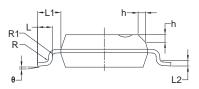
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (JANUARY 2024) to REV.A

Changed from product preview to production data

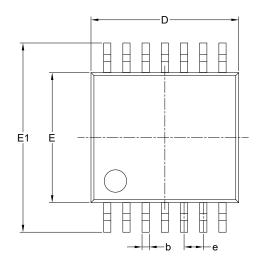


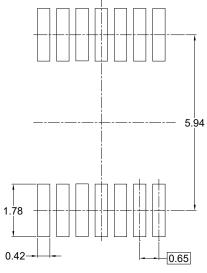

PACKAGE OUTLINE DIMENSIONS SOIC-14

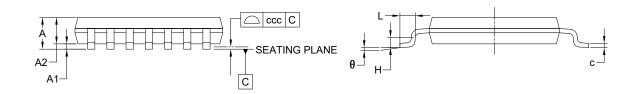
RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters		nsions ches	
	MIN	MAX	MIN	MAX	
A	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.65	0.049	0.065	
A3	0.55	0.75	0.022	0.030	
b	0.36	0.49	0.014	0.019	
D	8.53	8.73	0.336	0.344	
E	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
e	1.27	BSC	0.050 BSC		
L	0.45	0.80	0.018	0.032	
L1	1.04	REF	0.040 REF		
L2	0.25	BSC	0.01	BSC	
R	0.07		0.003		
R1	0.07		0.003		
h	0.30	0.50	0.012	0.020	
θ	0°	8°	0°	8°	

NOTES:


1. Body dimensions do not include mode flash or protrusion.


2. This drawing is subject to change without notice.


PACKAGE OUTLINE DIMENSIONS

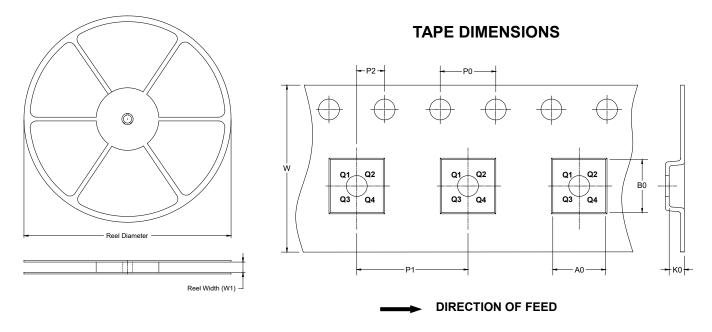
TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

	Dimensions In Millimeters							
Symbol	MIN	MOD	MAX					
A	-	-	1.200					
A1	0.050	-	0.150					
A2	0.800	-	1.050					
b	0.190	-	0.300					
С	0.090	-	0.200					
D	4.860	-	5.100					
E	4.300	-	4.500					
E1	6.200	-	6.600					
е		0.650 BSC						
L	0.450	-	0.750					
Н		0.250 TYP						
θ	0°	-	8°					
ccc		0.100						

NOTES:

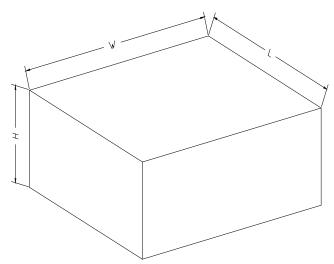
1. This drawing is subject to change without notice.


2. The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

F	Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
	SOIC-14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1
	TSSOP-14	13"	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

