

# SGM37601 40V High Efficiency Boost Converter with I<sup>2</sup>C Controlled 6-CH LED Driver

#### GENERAL DESCRIPTION

The SGM37601 is a high-efficiency LED driver designed specifically to provide backlight power for LED arrays in display applications. The SGM37601 supports up to 12 LEDs in series per string. It adopts peak current mode control, and the minimum LED string cathode voltage is regulated to an adequate operating headroom voltage, which produces sufficient voltage margin to guarantee the accuracy of the current.

The SGM37601 equips six internal current sinks for up to ±1.2% current matching, ensuring superior brightness uniformity across LED strings.

The LED current, switching frequency and dimming mode can be set via  $\mbox{I}^2\mbox{C}$  interface. An internal 40V power switch with  $155m\Omega$   $R_{DSON}$ , combined with peak-current-mode control, provides high efficiency performance and cycle-by-cycle over-current protection. The switching frequency can be programmed between 100kHz and 1.6MHz. The SGM37601 can achieve high efficiency and allows small component size.

The SGM37601 is available in Green TQFN-3.5×3.5-20L and TQFN-3×3-24L packages.

#### **APPLICATIONS**

LED Backlight for Tablet and Notebook

#### **FEATURES**

- Wide Input Voltage: 2.8V to 24V
- High Output Voltage: up to 40V
- Programmable LED Current: 6mA to 25mA per Channel
- LED Current Accuracy ±2%, Matching ±1.2%
- Dimming Controls
  - Direct PWM up to 25kHz with Minimum 1% Duty
  - + PWM to Analog:

Up to 2kHz @ 12-Bit Resolution Up to 4kHz @ 11-Bit Resolution Up to 8kHz @ 10-Bit Resolution

• PWM to Mixed:

Up to 2kHz @ 12-Bit Resolution
Up to 4kHz @ 11-Bit Resolution

- PWM to Mixed-26kHz:
   Up to 2kHz @ 12-Bit Resolution
   Up to 4kHz @ 11-Bit Resolution
   Up to 8kHz @ 10-Bit Resolution
- Programmable LED Current, Switching
   Frequency, and Dimming Mode via I<sup>2</sup>C Interface
- Switching Frequency: 100kHz to 1.6MHz
- Advanced Switching Slew Rate Control
- Flexible Boost Converter Compensation (Internal/External)
- Programmable PFM Mode with User-Defined Frequency Scaling
- Programmable Fade-In/Fade-Out Timing
- Embedded Memory with MTP
- Protections:
  - LED String Open, LED OVP and Short Protection
  - ◆ Cycle-by-Cycle Over-Current Protection
  - Programmable Output Over-Voltage Protection (Default 36V)
  - Programmable Over-Temperature Protection
- Available in Green TQFN-3.5×3.5-20L and TQFN-3×3-24L Packages



### PACKAGE/ORDERING INFORMATION

| MODEL       | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING        | PACKING<br>OPTION   |
|-------------|------------------------|-----------------------------------|--------------------|---------------------------|---------------------|
| SGM37601    | TQFN-3.5×3.5-20L       | -40°C to +85°C                    | SGM37601YTRL20G/TR | SGM1RG<br>YTRL20<br>XXXXX | Tape and Reel, 4000 |
| 361/13/7001 | TQFN-3×3-24L           | -40°C to +85°C                    | SGM37601YTWY24G/TR | 37601<br>YTWY24<br>XXXXX  | Tape and Reel, 4000 |

#### MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

TQFN-3.5×3.5-20L/TQFN-3×3-24L



Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### ABSOLUTE MAXIMUM RATINGS

| ADSOLUTE IVIANTIVIONI KATII             | 163               |
|-----------------------------------------|-------------------|
| Supply Input Voltage                    | 0.3V to 26.5V     |
| VIN, EN, PWM to AGND                    | 0.3V to 26.5V     |
| SW, VOUT, LED1, LED2, LED3, LED4, LI    | ED5, LED6 to AGND |
|                                         | 0.3V to 42V       |
| SDA, SCL, VDC, A0 to AGND               | 0.3V to 6V        |
| Package Thermal Resistance              |                   |
| TQFN-3.5×3.5-20L, θ <sub>JA</sub>       | 33.4°C/W          |
| TQFN-3.5×3.5-20L, θ <sub>JB</sub>       | 12.3°C/W          |
| TQFN-3.5×3.5-20L, θ <sub>JC (TOP)</sub> | 29.4°C/W          |
| TQFN-3.5×3.5-20L, θ <sub>JC (BOT)</sub> | 1.9°C/W           |
| TQFN-3×3-24L, θ <sub>JA</sub>           | 34.7°C/W          |
| TQFN-3×3-24L, θ <sub>JB</sub>           | 11.3°C/W          |
| TQFN-3×3-24L, θ <sub>JC (TOP)</sub>     | 34.4°C/W          |
| TQFN-3×3-24L, θ <sub>JC (BOT)</sub>     | 1.9°C/W           |
| Junction Temperature                    | +150°C            |
| Storage Temperature Range               | 65°C to +150°C    |
| Lead Temperature (Soldering, 10s)       | +260°C            |
| ESD Susceptibility (1)(2)               |                   |
| HBM                                     | ±2000V            |
| CDM                                     | ±1000V            |
|                                         |                   |

#### NOTES:

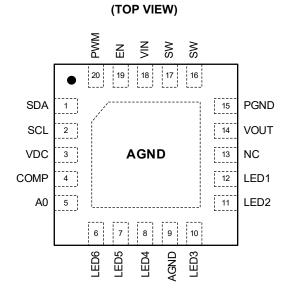
- 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

## **RECOMMENDED OPERATING CONDITIONS**

| Supply Input Voltage                 | 2.8V to 24V    |
|--------------------------------------|----------------|
| Operating Ambient Temperature Range  | 40°C to +85°C  |
| Operating Junction Temperature Range | 40°C to +125°C |

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

#### **DISCLAIMER**

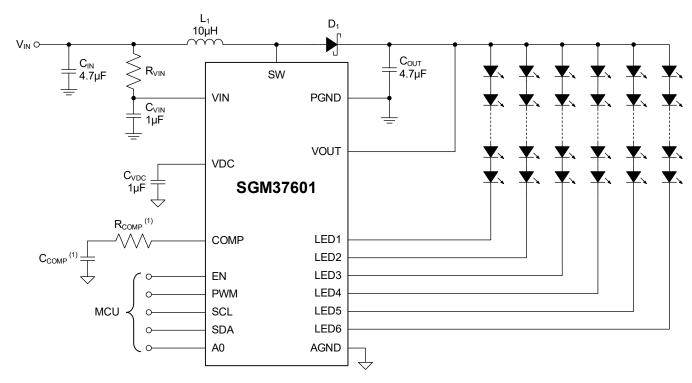
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

## **PIN CONFIGURATIONS**





TQFN-3.5×3.5-20L


## PIN DESCRIPTION

| PIN              | PIN          |      |                                                                                                                                                     | FUNCTION                                                                                                                     |  |
|------------------|--------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| TQFN-3.5×3.5-20L | TQFN-3×3-24L | NAME | TYPE                                                                                                                                                | FUNCTION                                                                                                                     |  |
| 1                | 2            | SDA  | I/O                                                                                                                                                 | I <sup>2</sup> C Interface Data Line.                                                                                        |  |
| 2                | 3            | SCL  | Į                                                                                                                                                   | I <sup>2</sup> C Interface Clock Line.                                                                                       |  |
| 3                | 4            | VDC  | Р                                                                                                                                                   | Internal Regulator Output Pin. A $1\mu F$ or larger ceramic capacitor should be used from VDC pin to AGND.                   |  |
| 4                | 1            | COMP | 0                                                                                                                                                   | Boost Converter External Compensation Pin.                                                                                   |  |
| 5                | 6            | A0   | 7-Bit Device Address Selection Pin. This pin is used to assi address of the device. Pull A0 low to select address 0x36, and to select address 0x37. |                                                                                                                              |  |
| 6                | 7            | LED6 | Р                                                                                                                                                   | LED6 Current Sink Pin.                                                                                                       |  |
| 7                | 8            | LED5 | Р                                                                                                                                                   | LED5 Current Sink Pin.                                                                                                       |  |
| 8                | 9            | LED4 | Р                                                                                                                                                   | LED4 Current Sink Pin.                                                                                                       |  |
| 9                | 5, 10, 21    | AGND | G                                                                                                                                                   | Analog Ground Pin.                                                                                                           |  |
| 10               | 11           | LED3 | Р                                                                                                                                                   | LED3 Current Sink Pin.                                                                                                       |  |
| 11               | 13           | LED2 | Р                                                                                                                                                   | LED2 Current Sink Pin.                                                                                                       |  |
| 12               | 14           | LED1 | Р                                                                                                                                                   | LED1 Current Sink Pin.                                                                                                       |  |
| 13               | 12, 18       | NC   | -                                                                                                                                                   | No Connection.                                                                                                               |  |
| 14               | 15           | VOUT | Р                                                                                                                                                   | Boost Converter Output Pin.                                                                                                  |  |
| 15               | 16, 17       | PGND | G                                                                                                                                                   | Power Ground.                                                                                                                |  |
| 16, 17           | 19, 20       | SW   | Р                                                                                                                                                   | Boost Converter Switching Pin.                                                                                               |  |
| 18               | 22           | VIN  | Р                                                                                                                                                   | Device Supply Input Pin.                                                                                                     |  |
| 19               | 23           | EN   | I                                                                                                                                                   | Active-High Enable Input Pin.                                                                                                |  |
| 20               | 24           | PWM  | I                                                                                                                                                   | PWM Dimming Signal Input Pin.                                                                                                |  |
| Exposed          | Pad          | AGND | G                                                                                                                                                   | Exposed Pad. To enhance heat dissipation, the exposed pad must be soldered to a large area on the PCB and connected to AGND. |  |

NOTE: I = input, I/O = input or output, P = power, G = ground.



## **TYPICAL APPLICATION**



**Figure 1. Typical Application Circuit** 

#### NOTE:

1. It is recommended to use differential RC values for low  $V_{IN}$  application. For 6P11S typical application, Boost switching frequency = 1.225MHz,  $I_{LED}$  = 25mA/channel,  $C_{OUT}$  = 4.7 $\mu$ F,  $L_1$  = 10 $\mu$ H, while the recommended value for RC compensation network is shown below:

| Case             | V <sub>IN</sub> Range (V) | R <sub>COMP</sub> (kΩ) | C <sub>COMP</sub> (nF) |
|------------------|---------------------------|------------------------|------------------------|
| Case 1: PWM Mode | 7 to 21                   | 20                     | 1                      |
| Case 2: DC Mode  | 5 to 21                   | 5.1                    | 22                     |

## **ELECTRICAL CHARACTERISTICS**

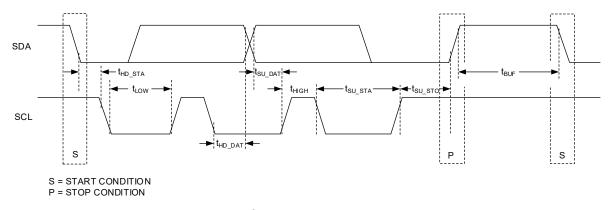
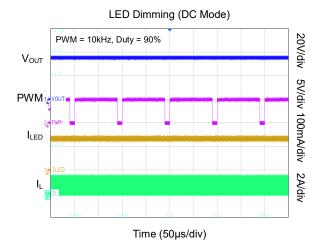
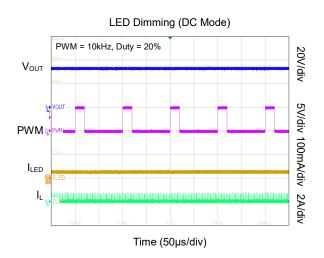
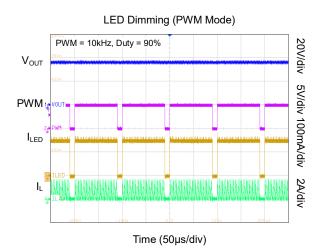
( $V_{IN}$  = 4.2V,  $T_J$  = +25°C,  $C_{VIN}$  = 1 $\mu$ F, unless otherwise noted.)

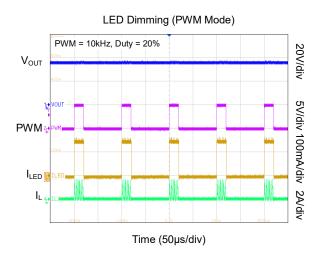
| PARAMETER                                 | SYMBOL                | CONDITIONS                                                                                           | MIN  | TYP  | MAX | UNITS |
|-------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------|------|------|-----|-------|
| Input Power Supply                        |                       |                                                                                                      |      | •    |     | •     |
| Input Supply Voltage                      | V <sub>IN</sub>       |                                                                                                      | 2.8  | 4.2  | 24  | V     |
| Out of the second Comment                 |                       | EN = high, f <sub>SW</sub> = 300kHz, PWM = 50%                                                       |      | 3.2  |     | mA    |
| Quiescent Current                         | ΙQ                    | EN = high, SW no switching, PWM = 0%                                                                 |      | 1.7  |     | mA    |
| Shutdown Current                          | I <sub>SHDN</sub>     | V <sub>IN</sub> = 4.2V, EN = low                                                                     |      | 2.6  | 5   | μΑ    |
| Under-Voltage Lockout Threshold           | $V_{\text{UVLO}}$     | V <sub>IN</sub> rising                                                                               |      | 2.7  |     | V     |
| Under-Voltage Lockout Hysteresis          | V <sub>UVLO_HYS</sub> |                                                                                                      |      | 210  |     | mV    |
| Interface Characteristic                  |                       |                                                                                                      |      |      |     |       |
| EN, PWM, SCL, SDA and A0 Input            | V <sub>IH</sub>       | V <sub>IN</sub> = 4.2V                                                                               | 1.2  |      |     | V     |
| Voltage                                   | V <sub>IL</sub>       | V <sub>IN</sub> = 4.2V                                                                               |      |      | 0.6 | V     |
| Internal Pull Low Resistor for EN, PWM    | R <sub>PULL_LOW</sub> |                                                                                                      |      | 1    |     | МΩ    |
| Internal Pull Low Current for SCL and SDA | I <sub>IH_2</sub>     |                                                                                                      |      | 0.01 | 1   | μА    |
| Output Low Level for SDA                  | $V_{OL\_SDA}$         | External pull-up current = 3mA                                                                       |      | 0.3  | 0.5 | V     |
| Output Leakage Current for SDA            | $V_{LK\_DIO}$         | SDA pin voltage = 3.3V                                                                               |      |      | 1   | μΑ    |
| Boost Converter                           |                       |                                                                                                      |      |      |     |       |
| Switching Frequency Accuracy              | f <sub>SW_ACC</sub>   | Boost operates at PWM mode, f <sub>SW</sub> = 300kHz                                                 | -9   |      | 9   | %     |
| Switching Frequency Setting Range         | f <sub>SW</sub>       | Boost operates at PWM mode                                                                           | 0.1  |      | 1.6 | MHz   |
| Maximum Duty Cycle                        | $D_{MAX}$             | f <sub>SW</sub> = 300kHz                                                                             | 90   | 95   |     | %     |
| Boost Switch R <sub>DSON</sub>            | R <sub>DSON</sub>     | V <sub>IN</sub> = 4.2V                                                                               |      | 155  |     | mΩ    |
| Switching Current Limitation              | I <sub>OCP</sub>      | NMOS peak current limit                                                                              | 2    | 2.5  | 3   | Α     |
| Boost Minimum ON Time                     | t <sub>MON</sub>      |                                                                                                      |      | 118  |     | ns    |
| VOUT Over-Voltage Limit                   | $V_{\text{OVP}}$      | Setting by OVP[4:0] bits with 1V/step, default 36V, rising threshold, $C_{\text{OUT}}$ = 4.7 $\mu$ F |      | 36   |     | V     |
| LED Current                               |                       |                                                                                                      |      |      |     |       |
| Leakage Current of LEDx                   | I <sub>LK_LEDx</sub>  | $V_{LEDx} = 36V$ , $I_{LEDx} = 0mA$                                                                  |      | 3.5  | 5   | μΑ    |
| LED Headroom Voltage                      | $V_{LED\_HR}$         | I <sub>LEDx</sub> = 20mA                                                                             | 0.35 | 0.5  |     | V     |
| Maximum LED Current Setting               | $I_{LED\_MAX}$        | LED 100% setting                                                                                     | 6    |      | 25  | mA    |
| Minimum LED Current Setting               | I <sub>LED_MIN</sub>  | Setting by dimming                                                                                   | 100  |      |     | μΑ    |
|                                           |                       | PWM duty = 100%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                | -2   |      | 2   | %     |
| LED Current Accuracy                      | I <sub>LED_ACC</sub>  | PWM duty = 15%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                 | -2.5 |      | 2.5 | %     |
| LEB Garrent Accuracy                      | ILED_ACC              | PWM duty = 5%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                  | -5   |      | 5   | %     |
|                                           |                       | PWM duty = 1%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                  | -15  |      | 15  | %     |
|                                           |                       | PWM duty = 100%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                | -1.2 |      | 1.2 | %     |
| LED Current Matching                      | l. ===                | PWM duty = 15%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                 | -1.5 |      | 1.5 | %     |
| LED Current Matching                      | I <sub>LED_MAT</sub>  | PWM duty = 5%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                  | -3   |      | 3   | %     |
|                                           |                       | PWM duty = 1%, I <sub>LEDx</sub> = 20mA, PWM = 1kHz                                                  | -7   |      | 7   | %     |
|                                           | Sres_2k               | PWM < 2kHz                                                                                           |      | 4096 |     | Steps |
| DC Dimming Resolution                     | Sres_4k               | PWM = 2kHz to 4kHz                                                                                   |      | 2048 |     | Steps |
| DO Danning Resolution                     | Sres_8k               | PWM = 4kHz to 8kHz                                                                                   |      | 1024 |     | Steps |
|                                           | Sres_25k              | PWM = 8kHz to 25kHz                                                                                  |      | 512  |     | Steps |
| PWM Minimum On/Off Time                   | t <sub>PWM_MIN</sub>  |                                                                                                      |      | 400  |     | ns    |

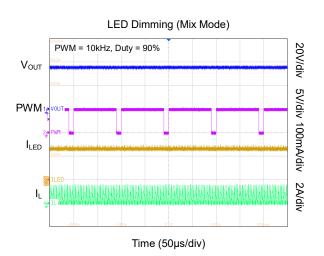
# **ELECTRICAL CHARACTERISTICS (continued)**

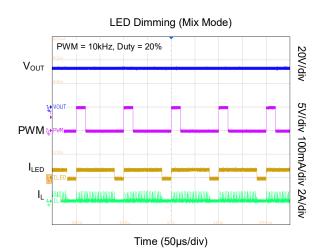
( $V_{IN}$  = 4.2V,  $T_J$  = +25°C,  $C_{VIN}$  = 1 $\mu$ F, unless otherwise noted.)

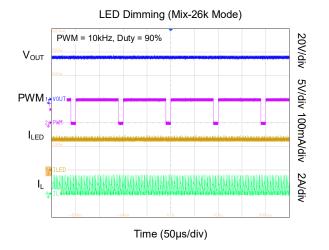
| PARAMETER                                                 | SYMBOL                 | CONDITIONS                                     | MIN | TYP  | MAX  | UNITS |
|-----------------------------------------------------------|------------------------|------------------------------------------------|-----|------|------|-------|
| Protection                                                | •                      |                                                |     |      | •    |       |
| OTP Rising Threshold                                      | T <sub>OTP</sub>       | Setting by OTP_OPTION[1:0] bits, default 140°C |     | 140  |      | ℃     |
| OTP Hysteresis                                            | T <sub>OTP_HYS</sub>   |                                                |     | 20   |      | °C    |
| LED Open Falling Threshold                                | V <sub>LED_OPEN</sub>  |                                                |     | 0.13 |      | V     |
| LED Short Rising Threshold                                | V <sub>LED_SHORT</sub> |                                                |     | 5.5  |      | V     |
| МТР                                                       | •                      |                                                |     |      |      |       |
| Data Write Time                                           | t <sub>wr</sub>        | Timing of write one page into MTP (12 byte)    |     | 50   |      | ms    |
| I <sup>2</sup> C Interface Timing                         | •                      |                                                |     |      |      |       |
| Maximum I <sup>2</sup> C Clock Frequency                  | f <sub>SCL_MAX</sub>   |                                                | 1   | 400  | 1000 | kHz   |
| Hold Time for START and Repeated START Condition          | t <sub>HD_STA</sub>    |                                                | 0.6 |      |      | μs    |
| SCL Clock Low Time                                        | t <sub>LOW</sub>       |                                                | 1.3 |      |      | μs    |
| SCL Clock High Time                                       | t <sub>HIGH</sub>      |                                                | 600 |      |      | ns    |
| Setup Time for a Repeated START Condition                 | t <sub>su_sta</sub>    |                                                | 600 |      |      | ns    |
| SDA Data Hold Time                                        | t <sub>HD_DAT</sub>    |                                                | 50  |      |      | ns    |
| SDA Data Setup Time                                       | t <sub>SU_DAT</sub>    |                                                | 100 |      |      | ns    |
| Setup Time for STOP Condition                             | t <sub>su_sto</sub>    |                                                | 600 |      |      | ns    |
| I <sup>2</sup> C Bus Free Time between a STOP and a START | t <sub>BUF</sub>       |                                                | 1.3 |      |      | μs    |
| Capacitive Load for I <sup>2</sup> C Bus                  | Св                     |                                                |     |      | 400  | pF    |

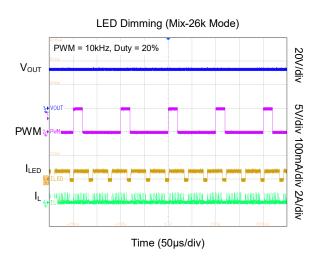





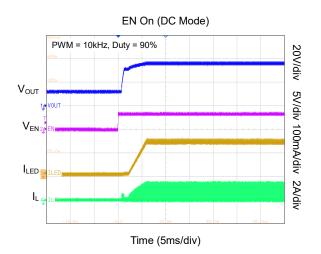


Figure 2. I<sup>2</sup>C Interface Timing Diagram

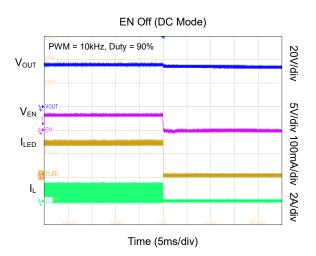

## TYPICAL PERFORMANCE CHARACTERISTICS

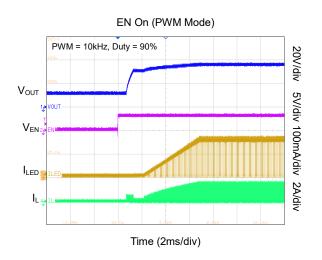


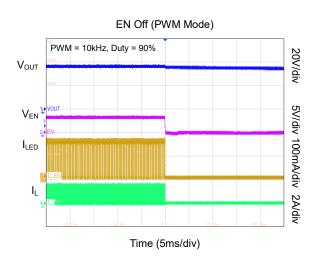



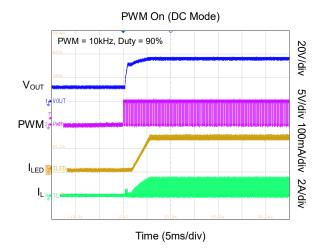



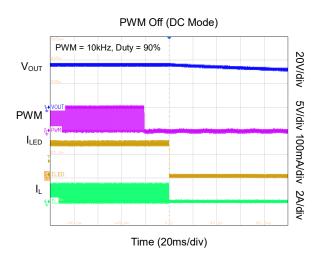



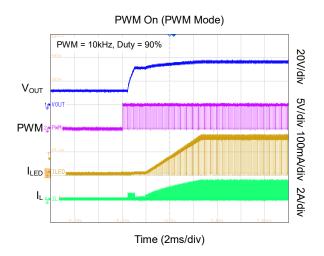



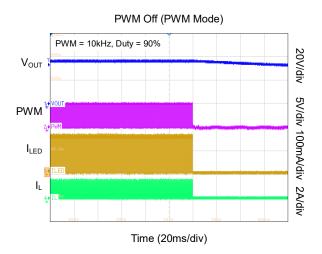



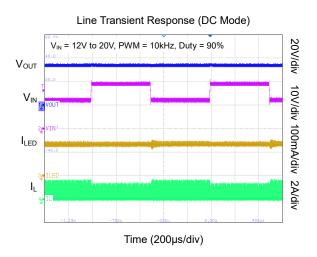



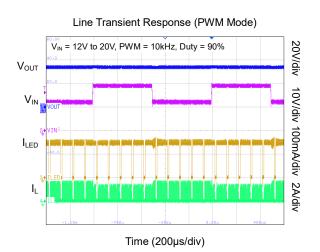



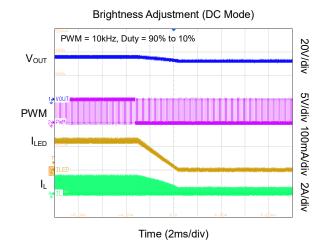



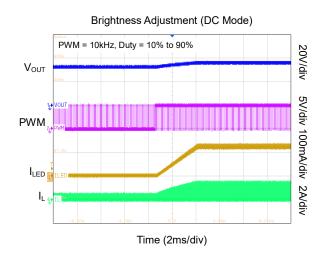



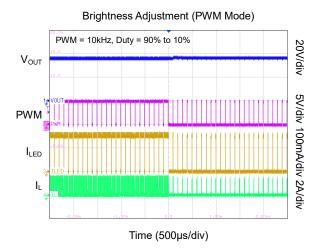



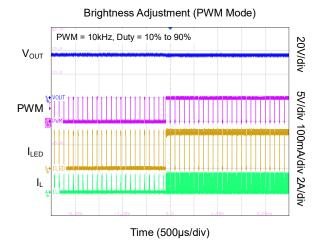



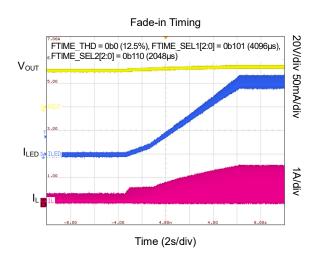



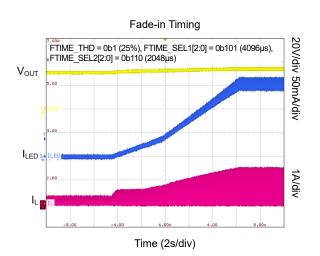



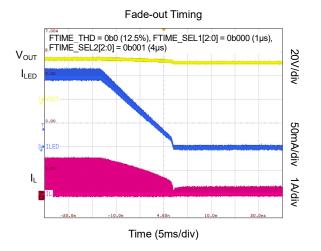



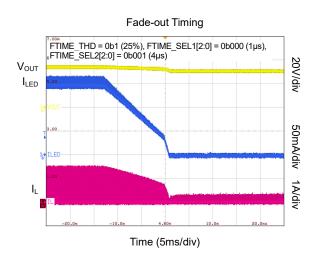



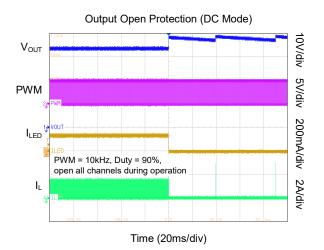



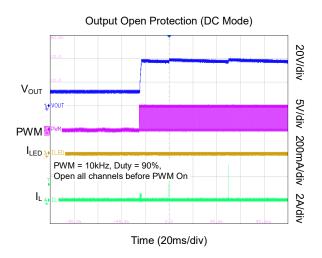



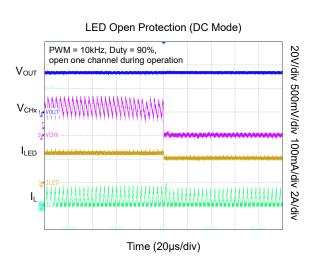



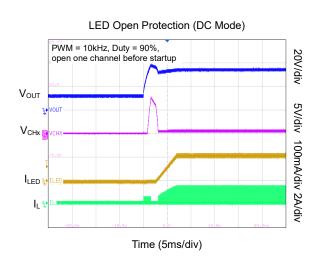



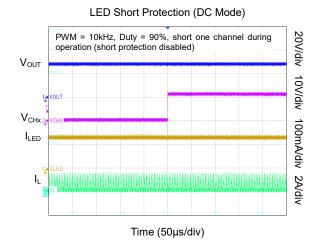



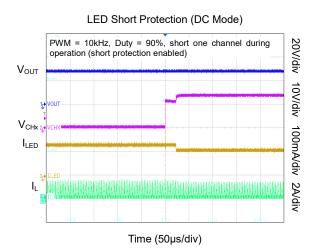



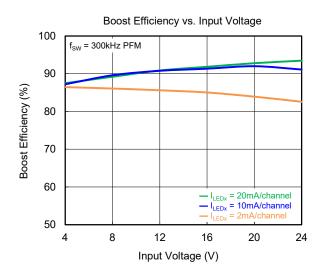



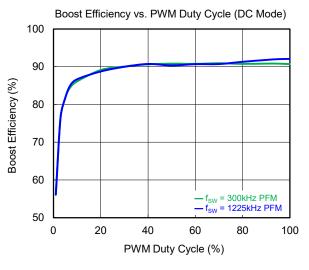



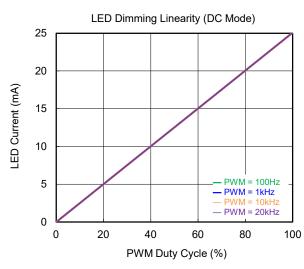



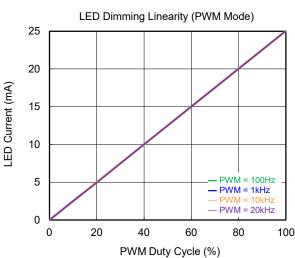



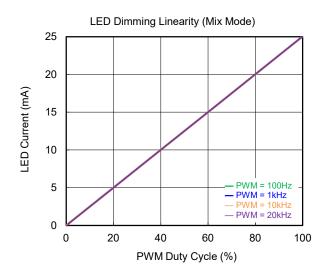



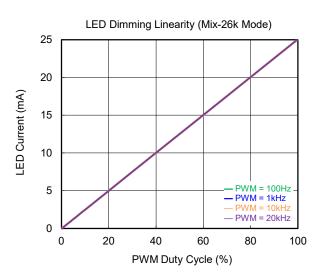



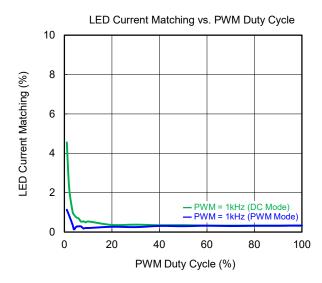














# **FUNCTIONAL BLOCK DIAGRAM**

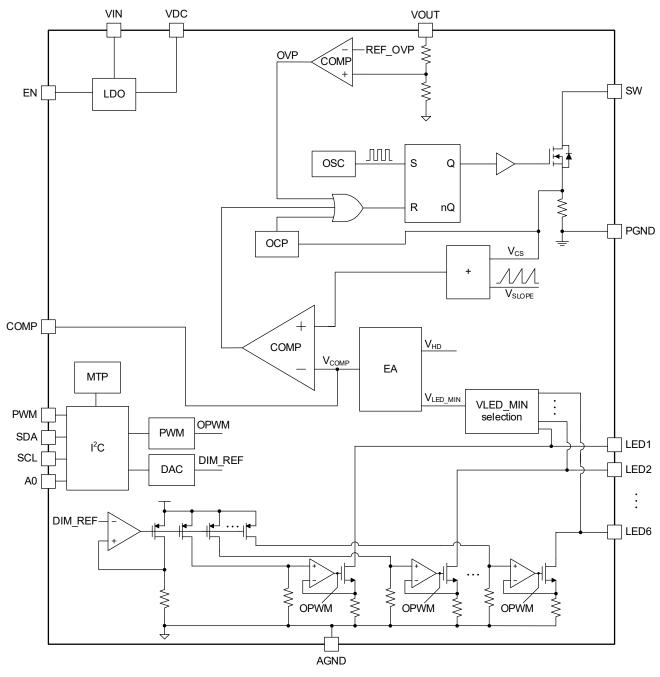
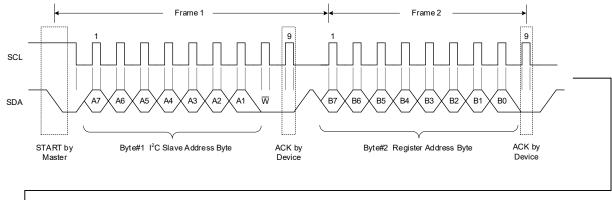




Figure 3. Functional Block Diagram

## **TIMING DIAGRAM**

#### I<sup>2</sup>C Interface

SGM37601  $I^2C$  slave address = 7'b0110110 (A0 = low) and 7'b0110111 (A0 = high).  $I^2C$  interface supports fast mode (bit rate up to 400kb/s). The write or read bit stream is shown in Figure 4 to Figure 11.



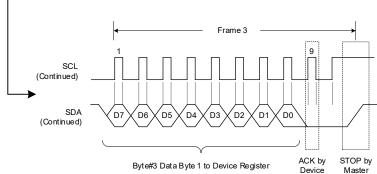
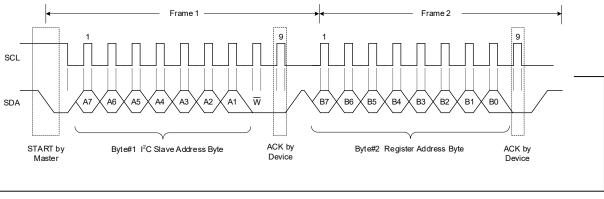




Figure 4. A Single Write Transaction (To SGM37601)



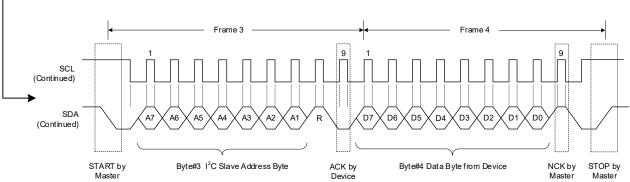



Figure 5. A Single Read Transaction (From SGM37601)

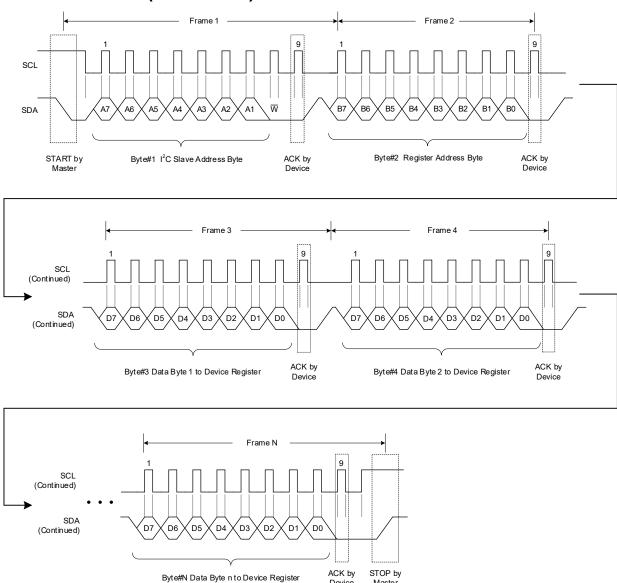



Figure 6. A Multi-Write Transaction (To SGM37601)

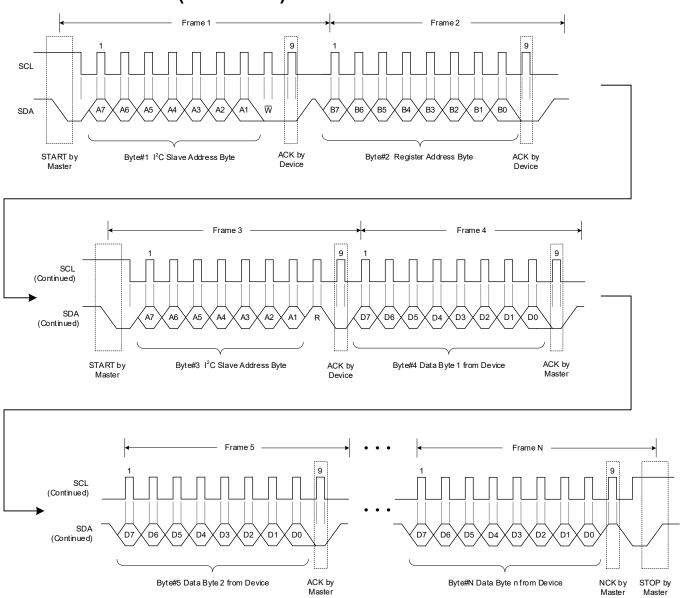
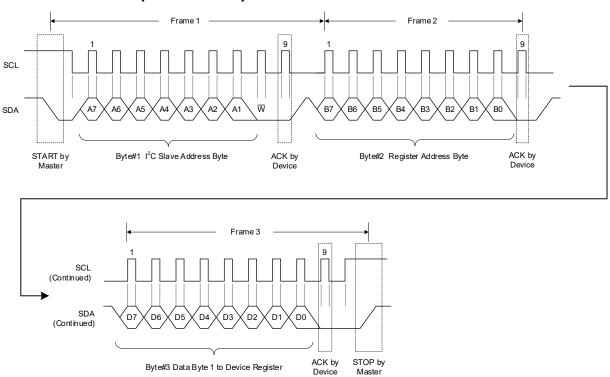




Figure 7. A Multi-Read Transaction (From SGM37601)






Figure 8. A Single Write Transaction (To EEPROM)

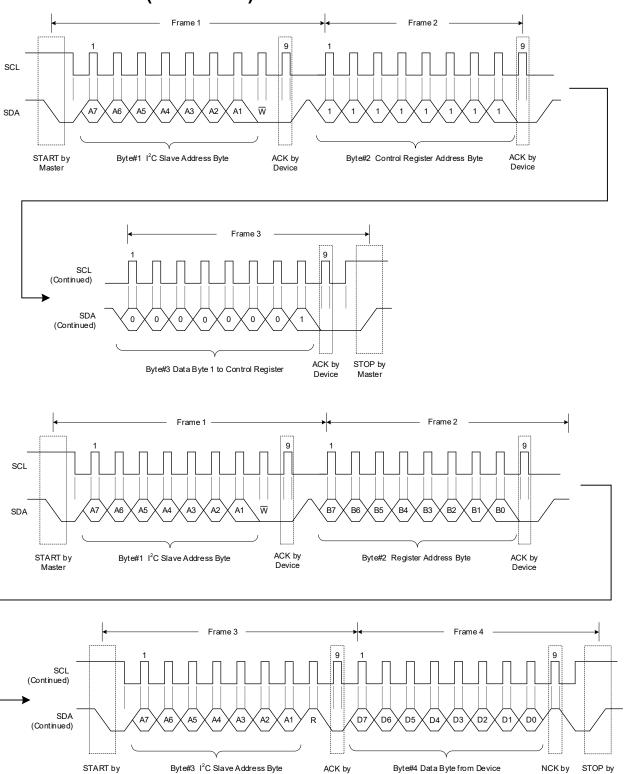



Figure 9. A Single Read Transaction (From EEPROM)

Master

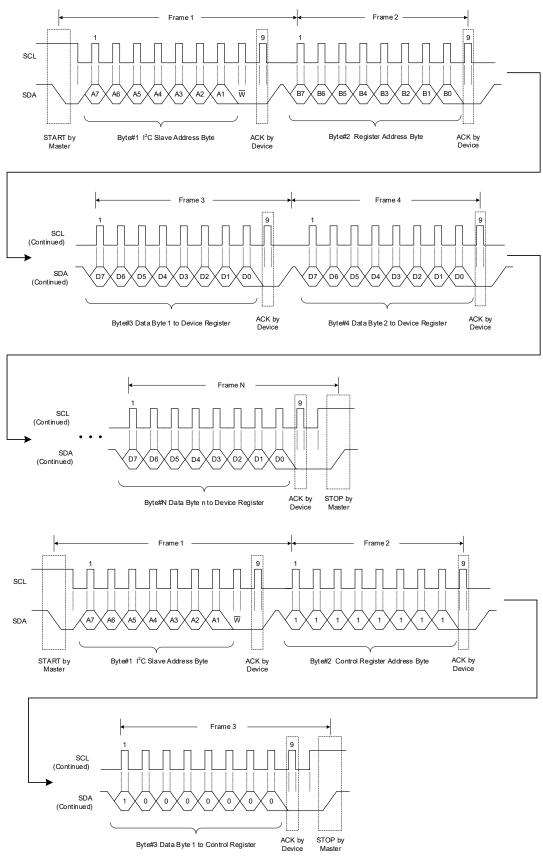



Figure 10. A Multi-Write Transaction (To EEPROM)



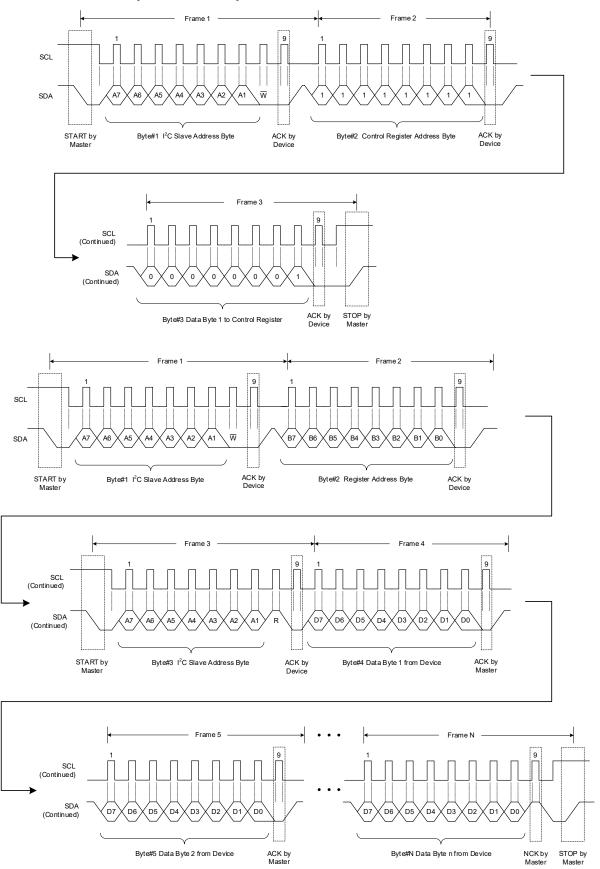
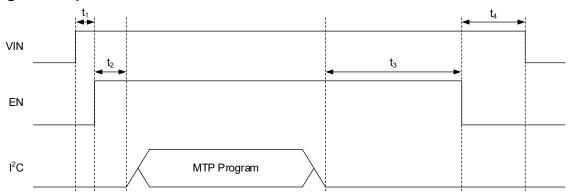




Figure 11. A Multi-Read Transaction (From EEPROM)



## **MTP Program Sequence**



Write:

 $t_1 = 30 \text{ms}, t_2 = 50 \text{ms}, t_3 = 500 \text{ms}, t_4 = 100 \text{ms}$ 

Read:

 $t_1 = 30 \text{ms}, t_2 = 50 \text{ms}, t_3 = 10 \text{ms}, t_4 = 100 \text{ms}$ 

 $f_{SCL} = 400kHz$ 

#### **DETAILED DESCRIPTION**

#### Overview

The SGM37601 is a 6-channel LED driver featuring programmable current output from 6mA to 25mA per channel. It operates as a peak current mode boost converter with an integrated 40V,  $155m\Omega$  power switch and supports an input voltage range of 2.8V to 24V.

Device flexibly configure parameters including Dimming mode, LED current, switching frequency, inductor current limit, and compensation method are configurable via the I<sup>2</sup>C interface. The device incorporates comprehensive protection features such as VIN UVLO, output OVP, LED Open/Short/OVP, and OTP.

It supports four dimming modes: DC Mode, PWM Mode, Mix mode, and Mix mode with 26kHz modulation, with PWM dimming frequencies ranging from 100Hz to 20kHz to accommodate various application needs. The SGM37601 offers high efficiency, excellent current accuracy, and superior channel-to-channel current matching.

#### **Soft-Start Function**

When  $V_{\text{IN}}$  exceeds the UVLO threshold and the EN pin voltage rises above its logic-high level, the internal VDC rail is regulated to approximately 3.3V, provided that VIN remains above this level. The SGM37601 also incorporates a soft-start function that activates once the VIN, EN, and PWM signals are ready, independent of their power-on sequence. After a brief delay, the LED current ramps up linearly to the target value set by the ILED[7:0] bits. The soft-start duration varies with the operating mode (PWM or Mix-mode) and PWM duty cycle, ensuring smooth brightness transition and improved user experience while supporting arbitrary power-on sequences.

## Brightness Control through the I<sup>2</sup>C Interface

The output current of each channel is programmed via the 8-bit ILED[7:0] bits field in REG0x01 register. It provides precise control through 191 digital steps with a resolution of 0.1mA per step and 00h programs 0mA.

#### **Brightness Control through the PWM Pin**

The SGM37601 offers four configurable dimming modes for LED brightness control: PWM, DC, Mix, and Mix-26kHz. The desired mode is selected using the DMS[1:0] bits in REG0x00 register. It supports Direct PWM, PWM-to-Analog, PWM-to-Mixed, and PWM-to-

Mixed-26kHz dimming operations with a PWM frequency of up to 2kHz and 12-bit resolution.

#### PWM Dimming Mode (DMS[1:0] = 00)

In this mode, the current sources are synchronized with the PWM signal, switching on and off accordingly. The LED current frequency matches the PWM input frequency.

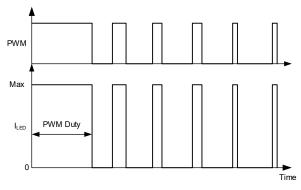



Figure 12. PWM Dimming

#### DC Dimming Mode (DMS[1:0] = 01)

The DC dimming mode introduces a two-cycle delay: the first cycle detects the PWM duty ratio, and the second cycle calculates the LED current reference. And at the beginning of the third cycle, the channel current starts to fade in or out. The average LED current is then set based on the measured duty ratio.

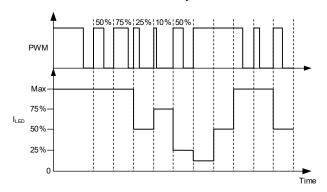



Figure 13. DC Dimming

#### Mix Dimming Mode (DMS[1:0] = 10)

This mode combines analog and PWM dimming. When the PWM duty cycle is between 25% and 100%, the output uses DC dimming with current amplitude scaled proportionally. When the PWM duty cycle is below 25%, it switches to a PWM dimming method where the current is fixed at 25% of the full-scale value and the effective dimming duty becomes four times the input PWM duty cycle.

## **DETAILED DESCRIPTION (continued)**

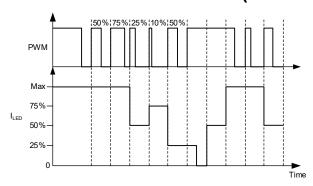



Figure 14. Mix Mode Dimming

#### Mix-26k Dimming Mode (DMS[1:0] = 11)

Similar to Mix mode, this option operates at a fixed 26kHz high frequency. It ensures inaudible operation while maintaining the same dimming principle: DC-based amplitude modulation above 25% duty cycle and PWM dimming below.

NOTE: During DC/Mix/Mix-26k mode dimming, when PWM Duty = 100% and 0%  $I_{LED}$  behavior is shown in Figure 15.

When PWM changes from low to high, the internal counter will start 20ms counting.

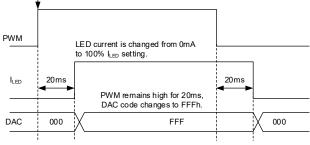



Figure 15. Duty 100% and 0% I<sub>LED</sub> Behavior

#### **LED Adaptive Control**

The SGM37601 continuously monitors all LEDx pin voltages and selects the minimum value for feedback through the error amplifier (EA). This ensures that the lowest LED pin voltage is maintained at approximately 500mV (default value), allowing the boost converter to regulate the output to match the highest forward voltage among all LED strings. The headroom voltage can be configured via I<sup>2</sup>C using LED\_HEADROOM[1:0] bits. The maximum configurable headroom voltage is 560mV.

#### **Boost Switching Frequency Setting**

The switching frequency of the Boost converter in the SGM37601 is configurable via the  $I^2\,C$  interface. Using the BOOST\_FSW[3:0] bits, the frequency can be programmed across a range of 100kHz to 1.6MHz, with

specific step resolution defined in the corresponding register settings.

#### **SW Slew Rate Control**

The SGM37601 provides programmable SW slew rate control via the SW\_RATE[1:0] Bits, enabling optimization of switching edge rates to reduce high-frequency noise and facilitate compliance with EMI requirements.

#### **PFM Function**

The SGM37601 supports a PFM (Pulse Frequency Modulation) mode, enabled via the EN\_PFM bit in REG0x03, which enhances light-load efficiency by reducing switching losses and minimizing power consumption under low-load conditions. The minimum PFM switching frequency is configurable through the PFM\_LOWEST\_FSW[5:0] bits, allowing the user to set a frequency threshold above the audible range to avoid noise and ensure reliable performance in audiosensitive applications.

Entry into PFM mode is determined by the minimum on-time set via the TON\_L\_PFM[2:0] bits, while exit is controlled by the TON\_H\_PFM[2:0] bits. These settings allow flexible optimization of light-load efficiency under various application conditions such as switching frequency, output LED voltage, and LED current.

Additionally, when operating in PFM mode, the PFM\_SLOW\_EN bit can be enabled to control the rate of frequency change, thereby improving stability during frequency modulation.

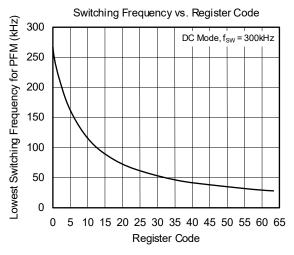



Figure 16. Switching Frequency vs. PFM\_LOWEST\_FSW[5:0]

Code

## **DETAILED DESCRIPTION (continued)**

#### **Fade IN/OUT Time Control**

The fade parameters are configured via I<sup>2</sup>C register REG0x08. The FTIME\_THD bit sets the duty cycle threshold (relative to the full-scale I<sub>LED</sub> current) for adaptive fade control: when this bit is set to 0, step time adjustment applies below 12.5% duty cycle; while this bit is set to 1, it applies below 25%. Below the threshold (12.5%×I<sub>LED</sub> or 25%×I<sub>LED</sub>), step time is controlled by FTIME\_SEL1[2:0], and above the threshold, it is controlled by FTIME\_SEL2[2:0]. The maximum configurable fade time is 16384μs, enabling smooth brightness transitions.

## **Boost Loop Compensation**

The SGM37601 provides both internal and external compensation modes to optimize loop performance, configurable via the SET\_BOOST bit. Internal compensation is enabled by default and allows real-time adjustment of loop characteristics through I<sup>2</sup>C programming of the RCOMP\_SEL[1:0] bits, facilitating efficient in-system debugging without external components.

For applications requiring higher precision, external compensation utilizes an RC network connected to the COMP pin which is the output of the internal error amplifier, together with the GM\_OPTION[1:0] bits for transconductance fine-tuning. The external resistor and capacitor values determine the integrator's gain bandwidth and zero frequency, enabling optimized transient response and stability.

Additionally, slope compensation can be adjusted in real time through the SLOP\_COMP\_SEL[1:0] bits, supporting diverse application conditions without BOM changes. This flexibility allows designers to rapidly adapt to various operating scenarios and shorten development cycles.

## MTP (Non-Volatile Memory) Function

The SGM37601 supports multiple-time programmable (MTP) memory for parameter storage and retrieval. MTP programming and reading are managed through the  $I^2C$  interface via REG0xFF register. A 5V supply voltage is required to perform writes to the MTP memory.

At power-on, the default values stored in the MTP are loaded into the corresponding I<sup>2</sup>C control registers.

During operation, all device settings can be adjusted directly through the  $I^2C$  registers without modifying the underlying MTP data. To update the non-volatile MTP defaults, first write the desired configuration to the  $I^2C$  registers, and then program them into MTP by writing the value 0x80 to address REG0xFF.

# Protections in Fault Operation Under-Voltage Lockout (UVLO)

The SGM37601 features a configurable VIN UVLO threshold programmable via the VIN\_UVLO[1:0] bits, with a default value of 2.7V. The device becomes operational when the input voltage exceeds the configured UVLO threshold (typically 2.7V for startup). If both the PWM and EN signals are present, a soft-start sequence is initiated. The device shuts down when the input voltage falls below the configured UVLO threshold 2.49V. The maximum programmable UVLO threshold is 3.8V.

#### **LED Open Detection**

The SGM37601 identifies an LED channel as open when its pin voltage falls below the 130mV entry threshold. The faulty channel is automatically disabled and excluded from the minimum voltage selection to ensure proper regulation of the remaining active channels. This state is non-latching, and normal operation resumes once the pin voltage rises above the exit threshold upon reconnection. Unused LEDx pins can be left floating or connected to AGND. If left unconnected, ensure sufficient noise immunity to prevent false triggering that may interfere with active LED channels. If all LEDx channels are open, the output voltage is clamped at the programmed over-voltage protection (OVP) level to maintain system safety.

#### **Channel LED OVP Level**

The SGM37601 continuously monitors the minimum voltage among all LEDx channels. When this voltage exceeds the configured LED OVP threshold, the internal switch is disabled. It is re-enabled once the minimum LEDx voltage falls back below the OVP threshold. As a result, the minimum LEDx voltage is effectively clamped at the programmed OVP level, preventing excessive voltage and avoiding LED thermal damage. The OVP threshold is programmable via the LED OVP[1:0] bits.

## **DETAILED DESCRIPTION (continued)**

#### **Channel LED Short Protection**

The SGM37601 incorporates a LED Short Protection (SLP) function. During operation, if the voltage on any LEDx pin exceeds approximately 5.5V, that channel is immediately turned off and latched into a protected state. The SLP feature can be enabled or disabled via the LED\_SHORT control bit. Setting LED\_SHORT = 1 enables the protection, and setting LED\_SHORT = 0 disables it. A latched channel resulting from a short event can be reset by toggling the EN pin or through an UVLO cycle.

#### **Current Limit Protection**

The SGM37601 provides over-current protection (OCP) by limiting the peak inductor current. It senses the inductor current during the on time. The duty cycle is determined by comparing the sensed current signal, along with internal slope compensation, with the error amplifier output. The peak current limit threshold is configurable via the ILIM SEL[1:0] accommodate different application requirements. If the inductor current exceeds the set limit, the device immediately stops switching for the remainder of the current cycle. Normal operation resumes at the beginning of the next switching cycle. In cases where the over-current condition persists, the SGM37601 will operate repeatedly in this current-limited state.

#### **Over-Voltage Protection**

The SGM37601 incorporates an over-voltage protection (OVP) function, which can be configured via I<sup>2</sup>C interface. The protection mechanism employs a comparator to monitor the voltage at the OVP pin. When this voltage exceeds the programmed OVP threshold, the device enters a protective state after a delay of several microseconds: switching is halted to cease energy transfer from the input to the output. Once the OVP pin voltage decreases by the specified hysteresis value, the boost converter resumes normal switching operation. The OVP threshold voltage is programmable through the OVP[4:0] configuration bits.

#### **Over-Temperature Protection**

The over-temperature protection (OTP) is activated when the device's junction temperature exceeds the threshold configured via the OTP\_OPTION[1:0] bits. Upon triggering, the SGM37601 immediately stops switching. Once the junction temperature decreases by the typical hysteresis value of 20°C, the Boost converter restarts automatically, and the LED driver resumes normal operation.

## **REGISTER MAP**

All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB).

## Slave Device Address: b0110110/b0110111 + R/W

| Register<br>Address | Default<br>Value | D[7]      | D[6]                             | D[5]            | D[4]                 | D[3]     | D[2]         | D[1]               | D[0]      |
|---------------------|------------------|-----------|----------------------------------|-----------------|----------------------|----------|--------------|--------------------|-----------|
| 0x00                | 01h              |           |                                  | Rese            | erved                |          |              | DMS                | [1:0]     |
| 0x01                | 8Dh              |           |                                  |                 | ILED                 | [7:0]    |              |                    |           |
| 0x02                | E9h              | SET_BOOST |                                  |                 | OVP[4:0]             |          |              | VIN_UV             | 'LO[1:0]  |
| 0x03                | 24h              | Rese      | erved                            | EN_PFM          | Reserved             |          | BOOST_       | FSW[3:0]           |           |
| 0x04                | F3h              |           | PFM_LOWEST_FSW[5:0] SW_RATE[1:0] |                 |                      |          |              |                    | TE[1:0]   |
| 0x06                | 22h              |           | Reserved LED_HEA                 |                 |                      |          |              |                    | ROOM[1:0] |
| 0x07                | 00h              |           | Reserved                         |                 | LED_SHORT            | Rese     | erved        | LED_OVP[1:0]       |           |
| 0x08                | 00h              | Reserved  | FTIME_THD                        | F               | TIME_SEL2[2:0]       |          |              | TIME_SEL1[2:0      | )]        |
| 0x09                | 21h              | Rese      | erved                            | RCOMP_          | IP_SEL[1:0] Reserved |          | erved        | SLOP_COMP_SEL[1:0] |           |
| 0x0A                | 12h              | Reserved  | Т                                | ON_L_PFM[2:0    | )]                   | Reserved |              | ILIM_SEL[1:0]      |           |
| 0x0B                | 41h              | GM_OP1    | ΓΙΟΝ[1:0]                        | PFM_SLOW<br>_EN | OTP_OPTION[1:0]      |          | ON_H_PFM[2:0 | )]                 |           |
| 0xFF                | 00h              | MTP_P     |                                  |                 | Rese                 | erved    |              |                    | MTP_R     |

Bit Type:

R/W: Read/Write

## **REG0x00:** Dimming Mode Selection Register [Reset = 0x01]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                   |
|--------|----------|---------|------|-----------------------------------------------------------------------------------------------|
| D[7:2] | Reserved | 000000  | R/W  | Reserved                                                                                      |
| D[1:0] | DMS[1:0] | 01      |      | Dimming Mode Selection 00 = PWM Mode 01 = DC Mode (default) 10 = Mix Mode 11 = Mix-26kHz Mode |

## **REG0x01: LED Current Setting Register [Reset = 0x8D]**

| BITS   | BIT NAME  | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                                |
|--------|-----------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:0] | ILED[7:0] | 10001101 | R/W  | Maximum LED Current Level. Each LED current can be set by $I^2C$ command. Range: 6mA (00000001) to 25mA (101111111), 0mA (00000000) (See Table 1) Default: 20mA (10001101) |

## SGM37601

# **REGISTER MAP (continued)**

Table 1. LED Current Setting

|                    | able 1. LED Current Setting |                    |                          |                    |                       |                    |                       |                    |                          |                    |                       |
|--------------------|-----------------------------|--------------------|--------------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|--------------------------|--------------------|-----------------------|
| ILED[7:0]<br>(hex) | I <sub>LED</sub>            | ILED[7:0]<br>(hex) | I <sub>LED</sub><br>(mA) | ILED[7:0]<br>(hex) | I <sub>LED</sub> (mA) | ILED[7:0]<br>(hex) | I <sub>LED</sub> (mA) | ILED[7:0]<br>(hex) | I <sub>LED</sub><br>(mA) | ILED[7:0]<br>(hex) | I <sub>LED</sub> (mA) |
| 0x00               | 0                           | 0x21               | 9.2                      | 0x42               | 12.5                  | 0x63               | 15.8                  | 0x84               | 19.1                     | 0xA5               | 22.4                  |
| 0x01               | 6.0                         | 0x22               | 9.3                      | 0x43               | 12.6                  | 0x64               | 15.9                  | 0x85               | 19.2                     | 0xA6               | 22.5                  |
| 0x02               | 6.1                         | 0x23               | 9.4                      | 0x44               | 12.7                  | 0x65               | 16.0                  | 0x86               | 19.3                     | 0xA7               | 22.6                  |
| 0x03               | 6.2                         | 0x24               | 9.5                      | 0x45               | 12.8                  | 0x66               | 16.1                  | 0x87               | 19.4                     | 0xA8               | 22.7                  |
| 0x04               | 6.3                         | 0x25               | 9.6                      | 0x46               | 12.9                  | 0x67               | 16.2                  | 0x88               | 19.5                     | 0xA9               | 22.8                  |
| 0x05               | 6.4                         | 0x26               | 9.7                      | 0x47               | 13.0                  | 0x68               | 16.3                  | 0x89               | 19.6                     | 0xAA               | 22.9                  |
| 0x06               | 6.5                         | 0x27               | 9.8                      | 0x48               | 13.1                  | 0x69               | 16.4                  | 0x8A               | 19.7                     | 0xAB               | 23.0                  |
| 0x07               | 6.6                         | 0x28               | 9.9                      | 0x49               | 13.2                  | 0x6A               | 16.5                  | 0x8B               | 19.8                     | 0xAC               | 23.1                  |
| 0x08               | 6.7                         | 0x29               | 10.0                     | 0x4A               | 13.3                  | 0x6B               | 16.6                  | 0x8C               | 19.9                     | 0xAD               | 23.2                  |
| 0x09               | 6.8                         | 0x2A               | 10.1                     | 0x4B               | 13.4                  | 0x6C               | 16.7                  | 0x8D               | 20.0                     | 0xAE               | 23.3                  |
| 0x0A               | 6.9                         | 0x2B               | 10.2                     | 0x4C               | 13.5                  | 0x6D               | 16.8                  | 0x8E               | 20.1                     | 0xAF               | 23.4                  |
| 0x0B               | 7.0                         | 0x2C               | 10.3                     | 0x4D               | 13.6                  | 0x6E               | 16.9                  | 0x8F               | 20.2                     | 0xB0               | 23.5                  |
| 0x0C               | 7.1                         | 0x2D               | 10.4                     | 0x4E               | 13.7                  | 0x6F               | 17.0                  | 0x90               | 20.3                     | 0xB1               | 23.6                  |
| 0x0D               | 7.2                         | 0x2E               | 10.5                     | 0x4F               | 13.8                  | 0x70               | 17.1                  | 0x91               | 20.4                     | 0xB2               | 23.7                  |
| 0x0E               | 7.3                         | 0x2F               | 10.6                     | 0x50               | 13.9                  | 0x71               | 17.2                  | 0x92               | 20.5                     | 0xB3               | 23.8                  |
| 0x0F               | 7.4                         | 0x30               | 10.7                     | 0x51               | 14.0                  | 0x72               | 17.3                  | 0x93               | 20.6                     | 0xB4               | 23.9                  |
| 0x10               | 7.5                         | 0x31               | 10.8                     | 0x52               | 14.1                  | 0x73               | 17.4                  | 0x94               | 20.7                     | 0xB5               | 24.0                  |
| 0x11               | 7.6                         | 0x32               | 10.9                     | 0x53               | 14.2                  | 0x74               | 17.5                  | 0x95               | 20.8                     | 0xB6               | 24.1                  |
| 0x12               | 7.7                         | 0x33               | 11.0                     | 0x54               | 14.3                  | 0x75               | 17.6                  | 0x96               | 20.9                     | 0xB7               | 24.2                  |
| 0x13               | 7.8                         | 0x34               | 11.1                     | 0x55               | 14.4                  | 0x76               | 17.7                  | 0x97               | 21.0                     | 0xB8               | 24.3                  |
| 0x14               | 7.9                         | 0x35               | 11.2                     | 0x56               | 14.5                  | 0x77               | 17.8                  | 0x98               | 21.1                     | 0xB9               | 24.4                  |
| 0x15               | 8.0                         | 0x36               | 11.3                     | 0x57               | 14.6                  | 0x78               | 17.9                  | 0x99               | 21.2                     | 0xBA               | 24.5                  |
| 0x16               | 8.1                         | 0x37               | 11.4                     | 0x58               | 14.7                  | 0x79               | 18.0                  | 0x9A               | 21.3                     | 0xBB               | 24.6                  |
| 0x17               | 8.2                         | 0x38               | 11.5                     | 0x59               | 14.8                  | 0x7A               | 18.1                  | 0x9B               | 21.4                     | 0xBC               | 24.7                  |
| 0x18               | 8.3                         | 0x39               | 11.6                     | 0x5A               | 14.9                  | 0x7B               | 18.2                  | 0x9C               | 21.5                     | 0xBD               | 24.8                  |
| 0x19               | 8.4                         | 0x3A               | 11.7                     | 0x5B               | 15.0                  | 0x7C               | 18.3                  | 0x9D               | 21.6                     | 0xBE               | 24.9                  |
| 0x1A               | 8.5                         | 0x3B               | 11.8                     | 0x5C               | 15.1                  | 0x7D               | 18.4                  | 0x9E               | 21.7                     | 0xBF               | 25.0                  |
| 0x1B               | 8.6                         | 0x3C               | 11.9                     | 0x5D               | 15.2                  | 0x7E               | 18.5                  | 0x9F               | 21.8                     |                    |                       |
| 0x1C               | 8.7                         | 0x3D               | 12.0                     | 0x5E               | 15.3                  | 0x7F               | 18.6                  | 0xA0               | 21.9                     |                    |                       |
| 0x1D               | 8.8                         | 0x3E               | 12.1                     | 0x5F               | 15.4                  | 0x80               | 18.7                  | 0xA1               | 22.0                     |                    |                       |
| 0x1E               | 8.9                         | 0x3F               | 12.2                     | 0x60               | 15.5                  | 0x81               | 18.8                  | 0xA2               | 22.1                     |                    |                       |
| 0x1F               | 9.0                         | 0x40               | 12.3                     | 0x61               | 15.6                  | 0x82               | 18.9                  | 0xA3               | 22.2                     |                    |                       |
| 0x20               | 9.1                         | 0x41               | 12.4                     | 0x62               | 15.7                  | 0x83               | 19.0                  | 0xA4               | 22.3                     |                    |                       |

**REG0x02: VIN UVLO, OTP and Boost Compensation Register [Reset = 0xE9]** 

| BITS   | BIT NAME      | DEFAULT | TYPE | DESCRIPTION                                                                                                                                 |
|--------|---------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | SET_BOOST     | 1       | R/W  | Boost Compensation 0 = External 1 = Internal (default)                                                                                      |
| D[6:2] | OVP[4:0]      | 11010   | R/W  | Over-Voltage Protection Selection $V_{OVP} = OVP[4:0] \times 1V + 10V$ Range: 10V (00000) to 41V (11111) (see Table 2) Default: 36V (11010) |
| D[1:0] | VIN_UVLO[1:0] | 01      | R/W  | VIN UVLO Selection<br>00 = 2.4V<br>01 = 2.7V (default)<br>10 = 3.2V<br>11 = 3.8V                                                            |

**Table 2. Boost Output Over-Voltage Setting** 

| OVP[4:0]<br>(hex) | Boost Output<br>Over-Voltage (V) | OVP[4:0]<br>(hex) | Boost Output<br>Over-Voltage (V) |
|-------------------|----------------------------------|-------------------|----------------------------------|
| 0x00              | 10                               | 0x10              | 26                               |
| 0x01              | 11                               | 0x11              | 27                               |
| 0x02              | 12                               | 0x12              | 28                               |
| 0x03              | 13                               | 0x13              | 29                               |
| 0x04              | 14                               | 0x14              | 30                               |
| 0x05              | 15                               | 0x15              | 31                               |
| 0x06              | 16                               | 0x16              | 32                               |
| 0x07              | 17                               | 0x17              | 33                               |
| 0x08              | 18                               | 0x18              | 34                               |
| 0x09              | 19                               | 0x19              | 35                               |
| 0x0A              | 20                               | 0x1A              | 36                               |
| 0x0B              | 21                               | 0x1B              | 37                               |
| 0x0C              | 22                               | 0x1C              | 38                               |
| 0x0D              | 23                               | 0x1D              | 39                               |
| 0x0E              | 24                               | 0x1E              | 40                               |
| 0x0F              | 25                               | 0x1F              | 41                               |

## **REG0x03: Boost Switching Frequency Setting Register [Reset = 0x24]**

| BITS   | BIT NAME       | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                 |
|--------|----------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved       | 00      | R/W  | Reserved                                                                                                                                                                                                                                                                                    |
| D[5]   | EN_PFM         | 1       | R/W  | PFM Function Enable 0 = OFF 1 = ON (default)                                                                                                                                                                                                                                                |
| D[4]   | Reserved       | 0       | R/W  | Reserved                                                                                                                                                                                                                                                                                    |
| D[3:0] | BOOST_FSW[3:0] | 0100    | R/W  | Boost Switching Frequency (f <sub>SW</sub> ) 0000 = 100kHz 0001 = 150kHz 0010 = 200kHz 0011 = 250kHz 0110 = 300kHz (default) 0110 = 400kHz 0110 = 500kHz 0111 = 600kHz 1000 = 700kHz 1001 = 800kHz 1001 = 800kHz 1011 = 1000kHz 1011 = 1000kHz 1110 = 1225kHz 1110 = 1450kHz 1111 = 1600kHz |

## **REG0x04: SW Slew Rate and Switching Frequency of PFM Control Register [Reset = 0xF3]**

| BITS   | BIT NAME            | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|---------------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:2] | PFM_LOWEST_FSW[5:0] | 111100  | R/W  | Lowest Switching Frequency for PFM Lowest switching frequency setting: = 16000/{16000/f <sub>SW</sub> + (8 × DAC) + 7} where DAC is the lowest switching frequency for PFM setting.  NOTE: The PFM function can be enabled by EN_PFM bit. When EN_PFM = 0, the Boost switching frequency is just determined by the switching frequency setting. When EN_PFM = 1 and the Boost on time < the minimum on time, the Boost switching frequency is decreased. |
| D[1:0] | SW_RATE[1:0]        | 11      | R/W  | SW Edge Rate Control<br>00 = 200%<br>01 = 50%<br>10 = 100%<br>11 = 200% (default)                                                                                                                                                                                                                                                                                                                                                                        |

## **REG0x06: LED Driver Headroom Setting Register [Reset = 0x22]**

| BITS   | BIT NAME          | DEFAULT | TYPE | DESCRIPTION                                                                           |
|--------|-------------------|---------|------|---------------------------------------------------------------------------------------|
| D[7:2] | Reserved          | 001000  | R/W  | Reserved                                                                              |
| D[1:0] | LED_HEADROOM[1:0] | 10      |      | LED Driver Headroom<br>00 = 400mV<br>01 = 460mV<br>10 = 500mV (default)<br>11 = 560mV |

# **REG0x07: LED Protection Setting Register [Reset = 0x00]**

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                  |
|--------|--------------|---------|------|------------------------------------------------------------------------------|
| D[7:5] | Reserved     | 000     | R/W  | Reserved                                                                     |
| D[4]   | LED_SHORT    | 0       | R/W  | LED Short Protection 0 = OFF (default) 1 = ON                                |
| D[3:2] | Reserved     | 00      | R/W  | Reserved                                                                     |
| D[1:0] | LED_OVP[1:0] | 00      | R/W  | LED OVP Level<br>00 = 2.1V (default)<br>01 = 2.52V<br>10 = 2.8V<br>11 = 3.5V |

## **REG0x08:** Fade IN/OUT Time Control Register [Reset = 0x00]

| BITS   | BIT NAME        | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                     |
|--------|-----------------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved        | 0       | R/W  | Reserved                                                                                                                                                        |
| D[6]   | FTIME_THD       | 0       | R/W  | Fading Time Duty Change Threshold<br>0 = 12.5% (default)<br>1 = 25%                                                                                             |
| D[5:3] | FTIME_SEL2[2:0] | 000     | R/W  | Fading Time Selection (Duty > Fading Time Duty Change) 000 = 1µs (default) 001 = 4µs 010 = 16µs 011 = 64µs 100 = 512µs 101 = 1024µs 111 = 2048µs 111 = 4096µs   |
| D[2:0] | FTIME_SEL1[2:0] | 000     | R/W  | Fading Time Selection (Duty < Fading Time Duty Change) 000 = 1µs (default) 001 = 4µs 010 = 16µs 011 = 64µs 100 = 1024µs 101 = 4096µs 111 = 8192µs 111 = 16384µs |

## **REG0x09: COMP Control Register [Reset = 0x21]**

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                   |
|--------|--------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved           | 00      | R/W  | Reserved                                                                                                                                                                      |
| D[5:4] | RCOMP_SEL[1:0]     | 10      | R/W  | $R_{\text{COMP}}$ Select Control<br>00 = 100kΩ<br>01 = 200kΩ<br>10 = 400kΩ (default)<br>11 = 800kΩ                                                                            |
| D[3:2] | Reserved           | 00      | R/W  | Reserved                                                                                                                                                                      |
| D[1:0] | SLOP_COMP_SEL[1:0] | 01      | R/W  | Slope Compensation Select at $f_{SW}$ = 1000kHz<br>00 = slope = 1V/ $\mu$ s<br>01 = slope = 1.5V/ $\mu$ s (default)<br>10 = slope = 0.5V/ $\mu$ s<br>11 = slope = 1V/ $\mu$ s |

## **REG0x0A:** Control Register [Reset = 0x12]

| BITS   | BIT NAME       | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                   |
|--------|----------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved       | 0       | R/W  | Reserved                                                                                                                                                                      |
| D[6:4] | TON_L_PFM[2:0] | 001     | R/W  | PFM ON Time (t <sub>ON_L_PFM</sub> ) Select<br>000 = 250ns<br>001 = 300ns (default)<br>010 = 350ns<br>011 = 400ns<br>100 = 450ns<br>101 = 500ns<br>110 = 550ns<br>111 = 600ns |
| D[3:2] | Reserved       | 00      | R/W  | Reserved                                                                                                                                                                      |
| D[1:0] | ILIM_SEL[1:0]  | 10      | R/W  | Peak Limit (I <sub>LIM</sub> ) Select<br>00 = 1.8A<br>01 = 2.1A<br>10 = 2.5A (default)<br>11 = 3.0A                                                                           |

## **REG0x0B:** Control Register [Reset = 0x41]

| BITS   | BIT NAME        | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                   |
|--------|-----------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | GM_OPTION[1:0]  | 01      | R/W  | GM Option<br>00 = 3.2μΑ/V<br>01 = 6.4μΑ/V (default)<br>10 = 12.8μΑ/V<br>11 = 51.2μΑ/V                                                                                         |
| D[5]   | PFM_SLOW_EN     | 0       | R/W  | PFM SLOW Function Enable Control 0 = PFM SLOW function disable (default) 1 = PFM SLOW function enable                                                                         |
| D[4:3] | OTP_OPTION[1:0] | 00      | R/W  | Over-Temperature Protection (OTP) Select<br>00 = 140°C (default)<br>01 = 145°C<br>10 = 150°C<br>11 = 155°C                                                                    |
| D[2:0] | TON_H_PFM[2:0]  | 001     | R/W  | PFM ON Time (t <sub>ON_H_PFM</sub> ) Select<br>000 = 300ns<br>001 = 350ns (default)<br>010 = 400ns<br>011 = 450ns<br>100 = 500ns<br>101 = 550ns<br>110 = 600ns<br>111 = 650ns |

## **REG0xFF: SW Slew Rate Control Register [Reset = 0x00]**

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                       |
|--------|----------|---------|------|-----------------------------------------------------------------------------------|
| D[7]   | MTP_P    | 0       | R/W  | MTP Programming 0 = normal operation (default) 1 = start MTP programming sequence |
| D[6:1] | Reserved | 000000  | R/W  | Reserved                                                                          |
| D[0]   | MTP_R    | 0       | R/W  | MTP Read $0 = I^2C$ read data from DAC (default) $1 = I^2C$ read data from MTP    |

#### **APPLICATION INFORMATION**

#### **Input Capacitor Selection**

The input of the entire controller can be divided into two parts. One part is the input of the Boost converter. Boost converter input capacitor has continuous current throughout the entire switching cycle. A 4.7µF ceramic capacitor is recommended to place as close as possible between the VIN pin and PGND pin. The other input is the input of the chip. High-frequency noise suppression can be achieved by configuring an RC filter to prevent false triggering of the under-voltage lockout (UVLO). It is recommended to use a resistor of  $10\Omega$  and a capacitor of  $1\mu F$ .

## **Output Capacitor Selection**

The output capacitor in a power supply or LED driver must meet ripple voltage requirement.

This ripple section is composed of two components. One component results from the voltage variations caused by the charging and discharging of the capacitor, while the other is the product of the inductor current ripple and the equivalent series resistance (ESR) of the output capacitor.

Calculating the value of  $\Delta V_{\text{OUT}}$  based on the below formula:

$$\Delta V_{\text{OUT}} = \frac{D \times I_{\text{OUT}}}{C_{\text{OUT}} \times f_{\text{SW}}}$$
 (1)

Ultimately, taking the equivalent series resistance (ESR) into account, the total output ripple voltage can be calculated by the below formula:

$$\Delta V_{\text{OUT}} = R_{\text{ESR}} \times \left(\frac{I_{\text{OUT}} \times V_{\text{OUT}}}{V_{\text{IN}}} + \frac{\Delta I_{\text{L}}}{2}\right) + \frac{D \times I_{\text{OUT}}}{C_{\text{OUT}} \times f_{\text{SW}}}$$
(2)

Ensure the capacitor ESR (Equivalent Series Resistance) low enough to prevent excessive power dissipation and thermal stress.

#### **Inductor Selection**

The selection of the inductor for SGM37601 should be based on the configuration of the input voltage, output voltage, LED channel current, and switching frequency. Under normal circumstances, it is recommended to use an inductor with an inductance value of  $10\mu H$  or  $4.7\mu H$ . The inductance value can ultimately be calculated by the below formula:

$$L_{1} = \frac{\eta \times (V_{IN})^{2} \times (V_{OUT} - V_{IN})}{0.4 \times (V_{OUT})^{2} \times I_{OUT} \times f_{SW}}$$
(3)

where

 $I_{OUT}$  = the sum of the currents from every LED channel.

 $V_{IN}$  = the minimum input voltage.

 $f_{SW}$  = the Boost switching frequency.

 $V_{OUT}$  = the maximum output voltage.

In addition to the inductance value, the DCR (DC resistance) of the inductor, as well as its saturation current and rated current, needs to be considered. It is advisable that the saturation current of the inductor be greater than the maximum possible peak value of the inductor current in the application scenario. Generally, it should meet the peak current-limiting value of SGM37601.

#### **Diode Selection**

The selection of diodes for an asynchronous Boost converter is crucial to the efficiency and overall performance of the Boost circuit. It is recommended to use Schottky diode with lower junction capacitance, shorter recovery time and lower  $V_{\text{F}}$  as rectifier diodes. The average current of the selected Schottky diode should be greater than the sum of the maximum currents of all channels, with a certain margin ensured. Meanwhile, the withstand voltage capacity of the Schottky diode should be greater than the set value of OVP, with a certain margin ensured.

#### **Loop Compensation**

The SGM37601 utilizes internal compensation by default, which can be optimized for various applications through the RCOMP SEL[1:0] bits. When external compensation is employed, the network must be carefully designed to ensure loop stability achieving high DC gain and sufficient phase margin at the target crossover frequency. Select  $R_{\text{COMP}}$  to optimize the high-frequency integrator gain for transient performance, and C<sub>COMP</sub> to position the integrator zero for loop stability. The GM OPTION[1:0] bits further allow internal GM adjustment to co-configure the overall loop response.

For a typical application (6P11S LED, 1.225MHz switching frequency, 25mA/channel,  $C_{OUT}$  = 4.7 $\mu$ F,  $L_1$  = 10 $\mu$ H), recommended compensation values are provided in the table below.

| Case             | V <sub>IN</sub> Range (V) | $R_{COMP}(k\Omega)$ | C <sub>COMP</sub> (nF) |
|------------------|---------------------------|---------------------|------------------------|
| Case 1: PWM Mode | 7 to 21                   | 20                  | 1                      |
| Case 2: DC Mode  | 5 to 21                   | 5.1                 | 22                     |

## **APPLICATION INFORMATION (continued)**

Converter bandwidth and stability must be balanced during compensation design.

In DC mode, where LED current is steady, Case 2 compensation is recommended for enhanced stability.

In PWM mode with pulsed loading, higher bandwidth (Case 1) improves ripple performance but requires careful consideration of input voltage range. If transient response is not critical, Case 2 can be used in both operating modes.

#### **Layout Considerations**

A well-designed PCB layout is critical for power switching converter circuits. To maximize the SGM37601's performance, strictly follow these layout guidelines:

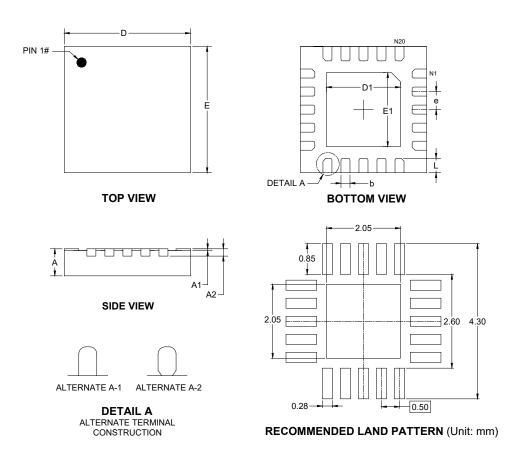
Place power components  $L_1$ ,  $D_1$ ,  $C_{VIN}$ , and  $C_{OUT}$  close together to minimize the AC current loop. Place the PCB traces between these components as short and wide as possible due to the large current flow during operation.

Place  $L_1$  and  $D_1$  close to the SW pins. Place the traces short and wide.

Place C<sub>VIN</sub> (input capacitor) close to the VIN pin.

Place C<sub>OUT</sub> (output capacitor) close to the VOUT pin.

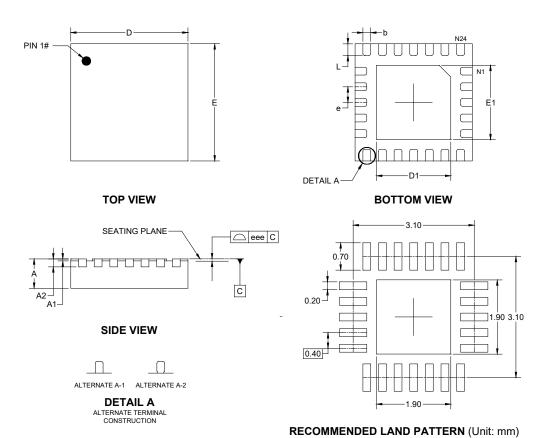
Place the compensation components close to COMP pin if external compensation is employed.


## **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| OCTOBER 2025 – REV.A to REV.A.1                 | Page |
|-------------------------------------------------|------|
| Modified Detailed Description section           | 23   |
|                                                 |      |
| Changes from Original to REV.A (SEPTEMBER 2025) | Page |
| Changed from product preview to production data | All  |



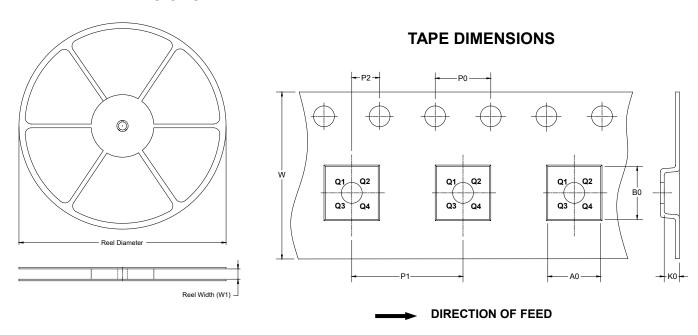

# PACKAGE OUTLINE DIMENSIONS TQFN-3.5×3.5-20L



| Symbol | Dimensions In Millimeters |       |       |  |  |  |
|--------|---------------------------|-------|-------|--|--|--|
| Symbol | MIN                       | NOM   | MAX   |  |  |  |
| Α      | 0.700                     | 0.750 | 0.800 |  |  |  |
| A1     | -                         | -     | 0.050 |  |  |  |
| A2     | 0.203 REF                 |       |       |  |  |  |
| D      | 3.450                     | 3.500 | 3.550 |  |  |  |
| D1     | 2.000                     | 2.050 | 2.100 |  |  |  |
| E      | 3.450                     | 3.500 | 3.550 |  |  |  |
| E1     | 2.000                     | 2.050 | 2.100 |  |  |  |
| b      | 0.200                     | 0.250 | 0.300 |  |  |  |
| е      | 0.500 BSC                 |       |       |  |  |  |
| L      | 0.350                     | 0.450 |       |  |  |  |

NOTE: This drawing is subject to change without notice.

# PACKAGE OUTLINE DIMENSIONS TQFN-3×3-24L

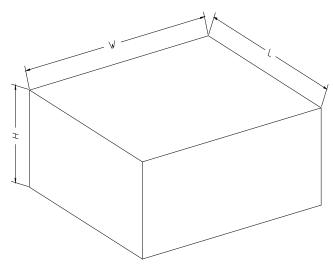



| Comple ed | Dimensions In Millimeters |     |       |  |
|-----------|---------------------------|-----|-------|--|
| Symbol    | MIN                       | NOM | MAX   |  |
| Α         | 0.700                     | -   | 0.800 |  |
| A1        | 0.000                     | -   | 0.050 |  |
| A2        | 0.203 REF                 |     |       |  |
| b         | 0.150                     | -   | 0.250 |  |
| D         | 2.900                     | -   | 3.100 |  |
| D1        | 1.800                     | -   | 2.000 |  |
| Е         | 2.900                     | -   | 3.100 |  |
| E1        | 1.800                     | -   | 2.000 |  |
| е         | 0.400 BSC                 |     |       |  |
| L         | 0.200                     | -   | 0.400 |  |
| eee       | 0.080                     |     |       |  |

NOTE: This drawing is subject to change without notice.

## TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type     | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TQFN-3.5×3.5-20L | 13"              | 12.4                     | 3.80       | 3.80       | 0.95       | 4.0        | 8.0        | 2.0        | 12.0      | Q2               |
| TQFN-3×3-24L     | 13"              | 12.4                     | 3.30       | 3.30       | 1.10       | 4.0        | 8.0        | 2.0        | 12.0      | Q2               |

## **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

## **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |