

74LVC257A

Quad 2-Input Multiplexer with 3-State Outputs

GENERAL DESCRIPTION

The 74LVC257A is a quad 2-input multiplexer with 3-state outputs. This device accepts a wide supply voltage range from 1.2V to 3.6V.

Both 3.3V and 5V devices can drive inputs, enabling this device to operate as a translator in a mixed 3.3V and 5V system environment. All inputs support Schmitt-Trigger action, which allows the circuit to tolerate slower input rise and fall times.

The output enable input (\overline{OE}) is active-low. When \overline{OE} is held high, the 1Y to 4Y outputs are in high-impedance state no matter what the conditions of the inputs are. When \overline{OE} is held low, four bits of data are selected from one of two sources that are determined by the state of the common data selection input (S), and are routed to the four outputs. The four outputs present the true (non-inverting) selected data. The S input can also be used as a function generator.

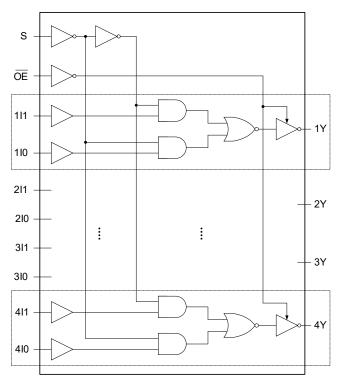
The 74LVC257A is available in Green TQFN-3.5×4-16L, SOIC-16 and TSSOP-16 packages. It operates over a temperature range of -40°C to +125°C.

FUNCTION TABLE

CONTRO	L INPUTS	INPUTS		OUTPUT
ŌE	S	nl0 nl1		nY
Н	X	X	X	Z
L	Н	X	L	L
L	Н	X	Н	Н
L	L	L	X	L
Ĺ	Ĺ	Н	X	Н

H = High Voltage Level

L = Low Voltage Level


Z = High-Impedance State

X = Don't Care

FEATURES

- Wide Supply Voltage Range: 1.2V to 3.6V
- Inputs Accept Voltages Higher than the Supply Voltage and up to 5.5V
- CMOS Low Power Dissipation
- Direct Interface with TTL Levels
- -40°C to +125°C Operating Temperature Range
- Available in Green TQFN-3.5×4-16L, SOIC-16 and TSSOP-16 Packages

LOGIC DIAGRAM

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	TQFN-3.5×4-16L	-40°C to +125°C	74LVC257AXTUU16G/TR	1NU XTUU16 XXXXX	Tape and Reel, 4000
74LVC257A	SOIC-16	-40°C to +125°C	74LVC257AXS16G/TR	1NRXS16 XXXXX	Tape and Reel, 2500
	TSSOP-16	-40°C to +125°C	74LVC257AXTS16G/TR	1NT XTS16 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

ADOCEOTE MAXIMOM NATINGO
Supply Voltage Range, V _{CC} 0.5V to 6.5V
Input Voltage Range, V _I ⁽¹⁾ 0.5V to 6.5V
Output Voltage Range, $V_0^{(1)}$ 0.5V to V_{CC} + 0.5V
Input Clamp Current, I _{IK} (V _I < 0V)50mA
Output Clamp Current, I_{OK} ($V_O > V_{CC}$ or $V_O < 0V$)±50mA
Continuous Output Current, I_O (V_O = 0V to V_{CC}) ± 50 mA
Continuous Current through V _{CC} or GND±100mA
Junction Temperature ⁽²⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (3) (4)
HBM±4000V
CDM±1000V

NOTES

- 1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 3. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 4. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

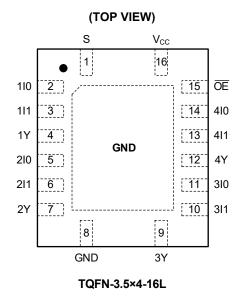
RECOMMENDED OPERATING CONDITIONS

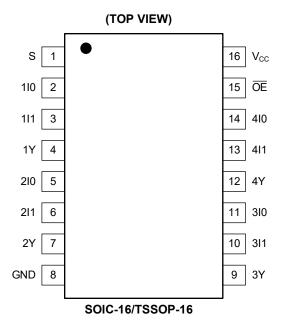
THE COMMENDED OF ENVIRON	5 001101110110
Supply Voltage Range, V _{CC}	1.65V to 3.6V
Data Retention Only, V _{CC}	1.2V to 3.6V
Input Voltage Range, V _I	0V to 5.5V
Output Voltage Range, Vo	0V to V _{CC}
Input Transition Rise or Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 1.65V to 2.7V	20ns/V (MAX)
V _{CC} = 2.7V to 3.6V	10ns/V (MAX)
Operating Junction Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	S	Common Data Selection Input.
2, 5, 11, 14	110, 210, 310, 410	Source 0 Data Inputs.
3, 6, 10, 13	111, 211, 311, 411	Source 1 Data Inputs.
4, 7, 9, 12	1Y, 2Y, 3Y, 4Y	Multiplexer Outputs with 3-State Mode.
8	GND	Ground.
15	ŌE	Output Enable Input (Active-Low).
16	Vcc	Supply Voltage.
Exposed Pad	GND	TQFN-3.5×4-16L package only. This is not a supply pin. The exposed pad can be left floating or soldered to the ground.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Lligh Lovel Input Voltage		V _{CC} = 1.2V	Full	1.08			
		V _{CC} = 1.65V to 1.95V	Full	0.65 × V _{CC}			V
High-Level Input Voltage	V _{IH}	V _{CC} = 2.3V to 2.7V	Full	1.70			· V
		V _{CC} = 2.7V to 3.6V	Full	2.00			•
		V _{CC} = 1.2V	Full			0.12	
Lave Lavel Immed Valtage		V _{CC} = 1.65V to 1.95V	Full			0.35 × V _{CC}	V
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.3V to 2.7V	Full			0.70	V
		V _{CC} = 2.7V to 3.6V	Full			0.80	•
		V_{CC} = 1.65V to 3.6V, I_{OH} = -100 μ A	Full	V _{CC} - 0.05	V _{CC} - 0.005		
	V _{он}	V _{CC} = 1.65V, I _{OH} = -4mA	Full	1.45	1.56		
Liberta Lacrat Octobro 4 Vallance		V _{CC} = 2.3V, I _{OH} = -8mA	Full	2.05	2.18		V
High-Level Output Voltage		V _{CC} = 2.7V, I _{OH} = -12mA	Full	2.40	2.54		
		V _{CC} = 3.0V, I _{OH} = -18mA	Full	2.55	2.78		•
		V _{CC} = 3.0V, I _{OH} = -24mA	Full	2.45	2.70		
		V_{CC} = 1.65V to 3.6V, I_{OL} = 100 μ A	Full		0.005	0.05	
		V _{CC} = 1.65V, I _{OL} = 4mA	Full		0.07	0.20	•
Low-Level Output Voltage	V _{OL}	V _{CC} = 2.3V, I _{OL} = 8mA	Full		0.11	0.25	V
		V _{CC} = 2.7V, I _{OL} = 12mA	Full		0.15	0.30	•
		V _{CC} = 3.0V, I _{OL} = 24mA	Full		0.30	0.55	•
Input Leakage Current	l _l	V _{CC} = 3.6V, V _I = 5.5V or GND	Full		±0.05	±2	μA
Off-State Output Current	l _{oz}	V_{CC} = 3.6V, V_I = V_{IH} or V_{IL} , V_O = V_{CC} or GND	Full		±0.05	±10	μA
Supply Current	I _{CC}	$V_{CC} = 3.6V$, $V_1 = V_{CC}$ or GND, $I_0 = 0A$	Full		0.05	10	μA
Additional Supply Current	ΔI _{CC}	Per input pin, $V_{CC} = 2.7V$ to 3.6V, $V_1 = V_{CC} - 0.6V$, $I_0 = 0A$	Full		0.05	20	μΑ
Input Capacitance	Cı	V_{CC} = 0V to 3.6V, V_{I} = GND to V_{CC}	+25°C		5		pF

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 1.2V, 1.8V, 2.5V, 2.7V and 3.3V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITI	ONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
			V _{CC} = 1.2V	+25°C		10.5		
			V _{CC} = 1.65V to 1.95V	Full	0.5	6.5	13.0	
		nI0, nI1 to nY, see Figure 2	V _{CC} = 2.3V to 2.7V	Full	0.5	4.0	7.4	ns
			V _{CC} = 2.7V	Full	0.5	4.0	6.8	
Propagation Delay ⁽²⁾			V _{CC} = 3.0V to 3.6V	Full	0.5	3.5	6.3	
Propagation Delay	t _{PD}		V _{CC} = 1.2V	+25°C		12.0		
			V _{CC} = 1.65V to 1.95V	Full	0.5	7.0	14.8	
		S to nY, see Figure 2	V _{CC} = 2.3V to 2.7V	Full	0.5	4.5	8.3	ns
			V _{CC} = 2.7V	Full	0.5	4.0	7.4	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.0	6.8	
	t _{EN}	OE to nY, see Figure 3	V _{CC} = 1.2V	+25°C		10.0		ns
			V_{CC} = 1.65V to 1.95V	Full	0.5	6.0	13.0	
Enable Time (2)			V _{CC} = 2.3V to 2.7V	Full	0.5	4.0	7.5	
			V _{CC} = 2.7V	Full	0.5	4.0	7.0	
			V _{CC} = 3.0V to 3.6V	Full	0.5	3.5	6.3	
			V _{CC} = 1.2V	+25°C		9.0		
			V_{CC} = 1.65V to 1.95V	Full	1.0	5.0	9.2	
Disable Time (2)	t _{DIS}	OE to nY, see Figure 3	V _{CC} = 2.3V to 2.7V	Full	0.5	3.5	7.0	ns
			V _{CC} = 2.7V	Full	0.5	3.5	6.5	
			V _{CC} = 3.0V to 3.6V	Full	0.5	3.5	6.0	
Output Skew Time (3)	t _{SK(O)}	V _{CC} = 3.0V to 3.6V		Full		0.5	1.5	ns
			V _{CC} = 1.65V to 1.95V	+25°C		9.0		
Power Dissipation Capacitance (4)	C_{PD}	$V_I = GND$ to V_{CC}	V _{CC} = 2.3V to 2.7V	+25°C		10.0		pF
- Capacitario			V _{CC} = 3.0V to 3.6V	+25°C		11.0		

NOTES:

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{EN} is the same as t_{PZL} and t_{PZH} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} .
- 3. It refers to the skew between any two outputs of the same package that switch in the same direction. The parameter is guaranteed by design.
- 4. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

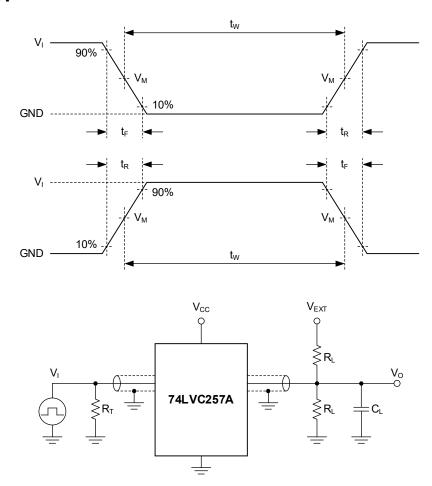
$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$

where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

 C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{Sum of outputs.}$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

 C_L : Load capacitance (includes jig and probe).

 $R_{T}\!\!:$ Termination resistance (equals to output impedance Z_{0} of the pulse generator).

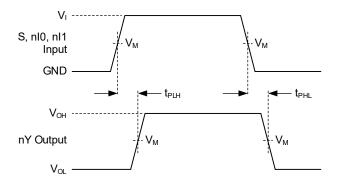
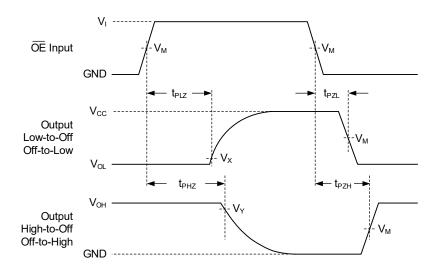

 $\ensuremath{V_{\text{EXT}}}\xspace$: External voltage is used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

Table 1. 1est conditions							
SUPPLY VOLTAGE	INF	PUT	LOAD		V _{EXT}		
SUPPLY VOLIAGE	Vı	t _R , t _F	CL	R _L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.2V	Vcc	≤ 2.0ns	30pF	1kΩ	Open	2 × V _{CC}	GND
1.65V to 1.95V	Vcc	≤ 2.0ns	30pF	1kΩ	Open	2 × V _{CC}	GND
2.3V to 2.7V	V _{CC}	≤ 2.0ns	30pF	500Ω	Open	2 × V _{CC}	GND
2.7V	2.7V	≤ 2.5ns	50pF	500Ω	Open	2 × V _{CC}	GND
3.0V to 3.6V	2.7V	≤ 2.5ns	50pF	500Ω	Open	2 × V _{CC}	GND

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Data Inputs (nI0, nI1) and Common Data Selection Input (S) to Output (nY) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	IN	PUT	OUTPUT		
V _{CC}	Vı	V _M ⁽¹⁾	V _M	V _X	V _Y
1.2V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V
1.65V to 1.95V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V
2.3V to 2.7V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V
2.7V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V
3.0V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V

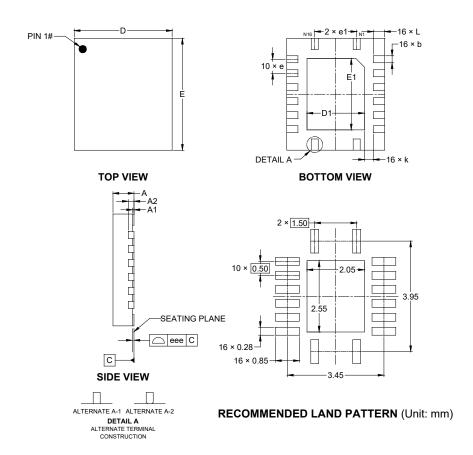
NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

74LVC257A

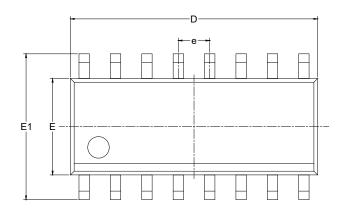
Quad 2-Input Multiplexer with 3-State Outputs

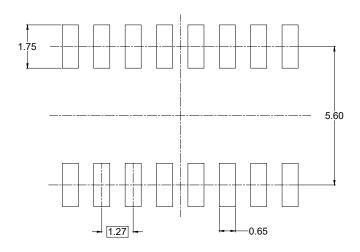
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

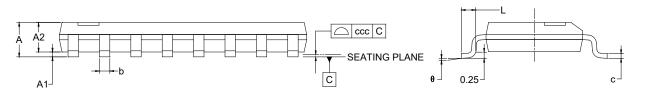
Changes from Original to REV.A (JULY 2025)

Page

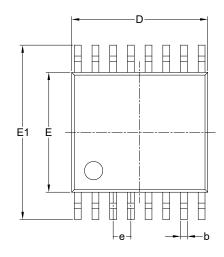

PACKAGE OUTLINE DIMENSIONS TQFN-3.5×4-16L

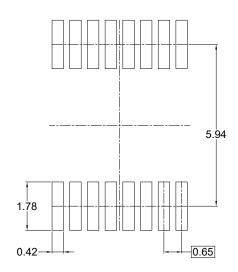


Cymhol	D	imensions In Millimete	ers	
Symbol	MIN	NOM	MAX	
Α	0.700	-	0.800	
A1	0.000	-	0.050	
A2		0.203 REF		
b	0.200	-	0.300	
D	3.400	-	3.600	
E	3.900	-	4.100	
D1	1.950	-	2.150	
E1	2.450	-	2.650	
е		0.500 BSC		
e1	1.500 BSC			
k	0.325 REF			
L	0.300	-	0.500	
eee		0.080		

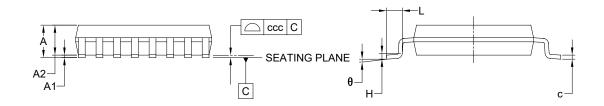

NOTE: This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS SOIC-16


RECOMMENDED LAND PATTERN (Unit: mm)

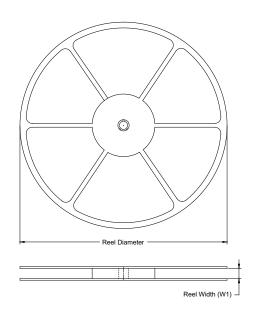


Symbol		Dimensions In Millimeters				
	MIN	NOM	MAX			
Α	-	-	1.750			
A1	0.100	-	0.250			
A2	1.250	-	1.550			
b	0.310	-	0.510			
С	0.100	-	0.250			
D	9.800	-	10.200			
E	3.800	-	4.000			
E1	5.800	-	6.200			
е	1.270 BSC					
L	0.400	-	1.270			
θ	0°	-	8°			
ccc		0.100				

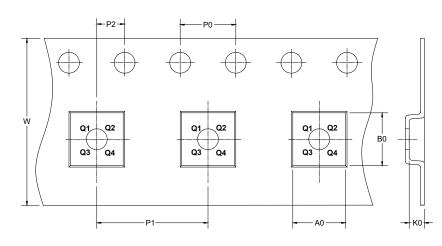

- NOTES:
 1. This drawing is subject to change without notice.
 2. The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MS-012.

PACKAGE OUTLINE DIMENSIONS TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)


Cumbal	Dir	nensions In Millimet	ers	
Symbol	MIN	NOM	MAX	
А	-	-	1.200	
A1	0.050	-	0.150	
A2	0.800	-	1.050	
b	0.190	-	0.300	
С	0.090	-	0.200	
D	4.860	-	5.100	
Е	4.300	-	4.500	
E1	6.200	-	6.600	
е		0.650 BSC		
L	0.450	-	0.750	
Н	0.250 TYP			
θ	0°	-	8°	
ccc		0.100		

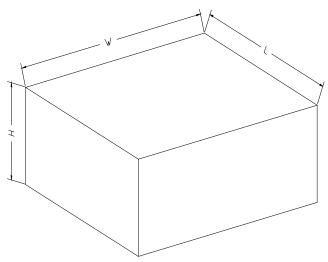
- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-153.



TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-3.5×4-16L	13"	12.4	3.75	4.25	1.05	4.0	8.0	2.0	12.0	Q1
SOIC-16	13"	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1
TSSOP-16	13"	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	200007