SGM4030 12µA, Low Noise, Small Packages, Voltage Reference

GENERAL DESCRIPTION

The SGM4030 is a tiny size, precision, low power, low noise, low dropout voltage reference, which is designed for portable or battery-powered applications. The device consumes only 12µA typical quiescent current. On normal load conditions, the SGM4030 can operate on a power supply voltage higher than the specified output voltage of 0.2V, except for SGM4030-1.25, whose minimum power supply voltage is 1.7V.

The SGM4030 is available in Green UTQFN-1.5×1.5-8L and SOT-23 packages. It is specified over the extended industrial temperature range (-40°C to +125°C).

APPLICATIONS

Battery-Powered Equipment
Portable Devices
Smartphones and Tablet PCs
Precision Data-Acquisition Systems
Medical Instrumentation
Handheld Test Equipment
Sensor Modules
HD Drives

FEATURES

- Low Temperature Drift: 50ppm/°C (MAX)
- High Initial Accuracy: ±0.15% (MAX)
- Low Noise: 32µV_{P-P} at 0.1Hz to 10Hz (SGM4030-2.048)
- Ultra-Low Dropout Voltage: 65mV (TYP)
- Fixed Output Voltage: 1.25V, 1.8V, 2.048V, 2.5V, 3.0V, 3.3V, 4.096V and 5.0V
- High Output Current: ±5mA
- Stable Output CLOAD Range: 0.1μF to 10μF
- Low Quiescent Current: 12µA (TYP)
- -40°C to +125°C Operating Temperature Range
- Available in Green UTQFN-1.5×1.5-8L and SOT-23 Packages

TYPICAL APPLICATION

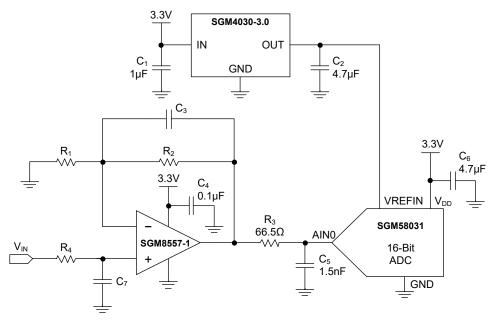
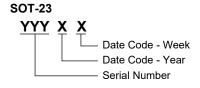


Figure 1. SGM4030-3.0 in an ADC Signal Chain

PACKAGE/ORDERING INFORMATION


MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM4030-1.25	UTQFN-1.5×1.5-8L		SGM4030-1.25XURO8G/TR	CI5 XXX	Tape and Reel, 4000
3GW4030-1.23	SOT-23	-40°C to +125°C	SGM4030-1.25XN3LG/TR	1KPXX	Tape and Reel, 3000
SGM4030-1.8	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-1.8XURO8G/TR	1KL XXX	Tape and Reel, 4000
3GIVI4030-1.6	SOT-23	-40°C to +125°C	SGM4030-1.8XN3LG/TR	1KQXX	Tape and Reel, 3000
SGM4030-2.048	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-2.048XURO8G/TR	1BZ XXX	Tape and Reel, 4000
3GIVI4030-2.040	SOT-23	-40°C to +125°C	SGM4030-2.048XN3LG/TR	1BYXX	Tape and Reel, 3000
SGM4030-2.5	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-2.5XURO8G/TR	CI6 XXX	Tape and Reel, 4000
3GIVI4030-2.3	SOT-23	-40°C to +125°C	SGM4030-2.5XN3LG/TR	1KRXX	Tape and Reel, 3000
SGM4030-3.0	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-3.0XURO8G/TR	CI7 XXX	Tape and Reel, 4000
GGIVI 1 030-3.0	SOT-23	-40°C to +125°C	SGM4030-3.0XN3LG/TR	1KSXX	Tape and Reel, 3000
SGM4030-3.3	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-3.3XURO8G/TR	1KM XXX	Tape and Reel, 4000
3GIVI4030-3.3	SOT-23	-40°C to +125°C	SGM4030-3.3XN3LG/TR	CI8XX	Tape and Reel, 3000
SGM4030-4.096	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-4.096XURO8G/TR	1KN XXX	Tape and Reel, 4000
3GIVI4030-4.090	SOT-23	-40°C to +125°C	SGM4030-4.096XN3LG/TR	1KTXX	Tape and Reel, 3000
SGM4030-5.0	UTQFN-1.5×1.5-8L	-40°C to +125°C	SGM4030-5.0XURO8G/TR	1KO XXX	Tape and Reel, 4000
3GIVI4030-3.0	SOT-23	-40°C to +125°C	SGM4030-5.0XN3LG/TR	1KUXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XX = Date Code. XXX = Date Code and Trace Code.

YYY— Serial Number
XXX

Trace Code
Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Input Voltage	6V
Output Voltage	V _{IN}
Output Short-Circuit Current, I _{SC}	Continuous
Package Thermal Resistance	
UTQFN-1.5×1.5-8L, θ_{JA}	180°C/W
UTQFN-1.5×1.5-8L, θ _{JB}	79.6°C/W
SOT-23, θ _{JA}	190°C/W
SOT-23, θ _{JB}	36.2°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility (1) (2)	
HBM	±4000V
CDM	±1000V

NOTES:

- 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

RECOMMENDED OPERATING CONDITIONS

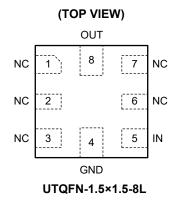
Supply Input Voltage Range, $V_{IN}^{(1)}$ V_{OUT} + 0.2V to 5.5V Output Current Range, I_{OUT}-5mA to 5mA

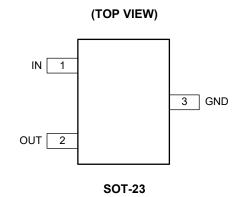
NOTE:

1. For the SGM4030-1.25, the minimum supply voltage is 1.7V.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

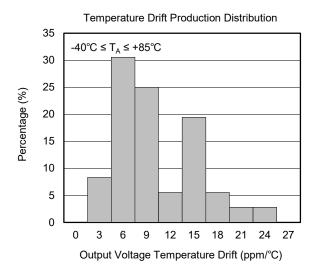
PIN		NAME	FUNCTION	
UTQFN-1.5×1.5-8L	SOT-23	NAME	FUNCTION	
1, 2, 3, 6, 7	_	NC	Not Connected.	
4	3	GND	Ground.	
5	1	IN	Input Supply Voltage.	
8	2	OUT	Reference Output Voltage.	

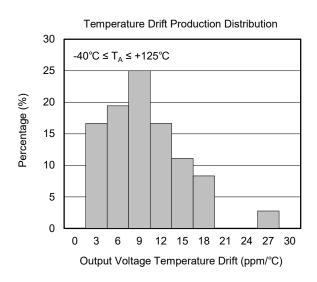
ELECTRICAL CHARACTERISTICS

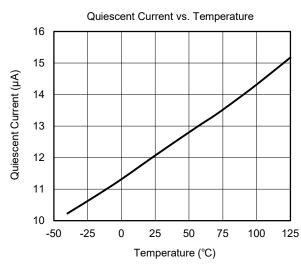
(At $T_A = +25$ °C, $V_{IN} = 5.5$ V, $I_{LOAD} = 0$ mA, unless otherwise noted.)

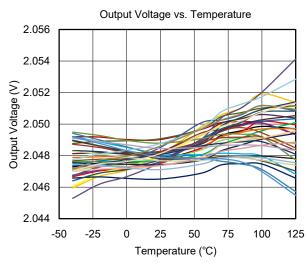
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
SGM4030-1.8							
Output Voltage	V _{out}			1.8		V	
Initial Accuracy			-0.15		0.15	%	
		V _{IN} = 2V to 5.5V		33	95	ppm/V	
		T _A = 0°C to +70°C		36			
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	T _A = -40°C to +85°C		36			
		T _A = -40°C to +125°C		40			
Output Voltage Noise		f = 0.1Hz to 10Hz		28		μV _{P-P}	
SGM4030-2.048			1	•		1	
Output Voltage	V _{out}			2.048		V	
Initial Accuracy			-0.15		0.15	%	
		V _{IN} = 2.25V to 5.5V		40	100		
		T _A = 0°C to +70°C		42			
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	T _A = -40°C to +85°C		42		ppm/V	
		T _A = -40°C to +125°C		45			
Output Voltage Noise		f = 0.1Hz to 10Hz		32		μV _{P-P}	
SGM4030-2.5			l l	I	l	- I	
Output Voltage	V _{OUT}			2.5		V	
Initial Accuracy			-0.15		0.15	%	
		V _{IN} = 2.7V to 5.5V		45	135	ppm/V	
		T _A = 0°C to +70°C		45			
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	T _A = -40°C to +85°C		50			
		T _A = -40°C to +125°C		52			
Output Voltage Noise		f = 0.1Hz to 10Hz		40		μV _{P-P}	
SGM4030-3.0			1	•		1	
Output Voltage	V _{out}			3		V	
Initial Accuracy			-0.15		0.15	%	
		V _{IN} = 3.2V to 5.5V		50	150		
		T _A = 0°C to +70°C		55		Ī	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	T _A = -40°C to +85°C		55		ppm/V	
		T _A = -40°C to +125°C		55			
Output Voltage Noise		f = 0.1Hz to 10Hz		48		μV _{P-P}	
SGM4030-5.0	.	1	1			1	
Output Voltage	V _{out}			5		V	
Initial Accuracy			-0.15		0.15	%	
		V _{IN} = 5.2V to 5.5V		50	265		
Line Demokration	A)/ /A)/	$T_A = 0$ °C to +70°C		140		ppm/V	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	T _A = -40°C to +85°C		220			
		T _A = -40°C to +125°C		305			
		+		+	 	+	

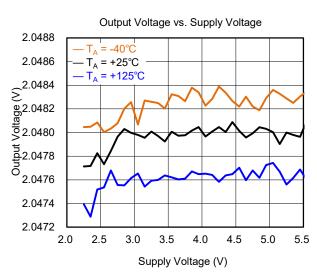
ELECTRICAL CHARACTERISTICS (continued)

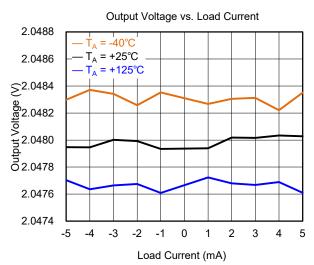

(At $T_A = +25$ °C, $V_{IN} = 5.5$ V, $I_{LOAD} = 0$ mA, unless otherwise noted.)

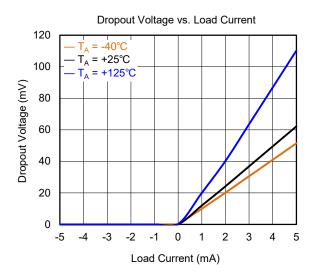

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
SGM4030-1.8/2.048/2.5/3.0/5.0			•			•		
		$V_{IN} = V_{OUT} + 0.2V$, $I_{LOAD} = \pm 5mA$		2.5	25			
Load Damidation	A\/ /AI	T _A = 0°C to +70°C		3		ppm/mA		
Load Regulation	$\Delta V_{OUT}/\Delta I_{LOAD}$	T _A = -40°C to +85°C		3				
		T _A = -40°C to +125°C		4	40	1		
Outrout Valle are Temporative Drift (1)	A)/ /AT	T _A = -40°C to +85°C		8	50	100		
Output Voltage Temperature Drift (1)	$\Delta V_{OUT}/\Delta T$	T _A = -40°C to +125°C		9	50	ppm/°C		
Lange Tames Otability		I _{OUT} = 0mA, 0h to 1000h at +25°C		100				
Long-Term Stability		I _{OUT} = 0mA, 1000h to 2000h at +25°C		25		— ppm		
Thermal Hysteresis	dT	T _A = +25°C to -40°C to +125°C to +25°C		150		ppm		
	V _{IN} - V _{OUT}	I _{LOAD} = ±5mA		65	100			
		T _A = 0°C to +70°C		82]		
Dropout Voltage		T _A = -40°C to +85°C		90		mV		
		T _A = -40°C to +125°C		120	200			
		I _{LOAD} = ±2mA, T _A = -40°C to +125°C		25	70			
Short-Circuit Current	I _{sc}	Sourcing and sinking		32		mA		
Capacitive Load	C_{LOAD}		0.1		10	μF		
Turn-On Settling Time	ts	To 0.1% with C _{LOAD} = 1μF		2		ms		
Power Supply					•	•		
Specified Voltage Range (2)	V _{IN}		V _{OUT} + 0.2		5.5	V		
Operating Voltage Range		I _{LOAD} = 0mA		V _{OUT} + 0.005	5.5	V		
Quiescent Current				12	20	μΑ		
Quicocolit Oulletit	lα	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			25	μΛ		
Temperature								
Specified Range	T _A		-40	-	125	°C		

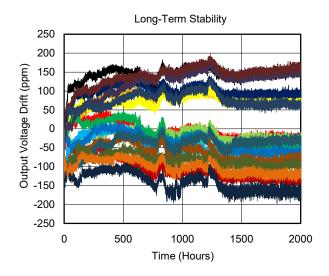

NOTES:

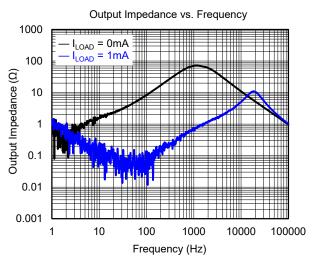

- 1. The way to determine temperature drift is using Box Method.
- 2. For the SGM4030-1.25, the minimum supply voltage is 1.7V.

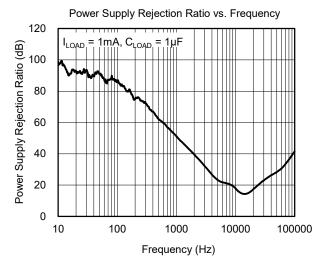

TYPICAL PERFORMANCE CHARACTERISTICS

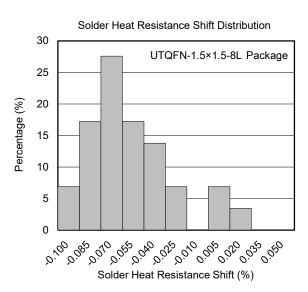


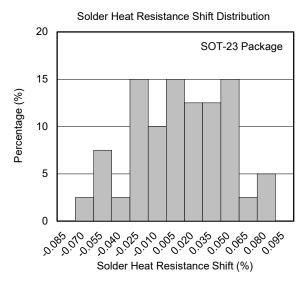


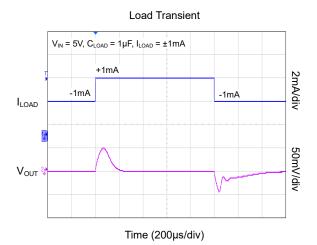


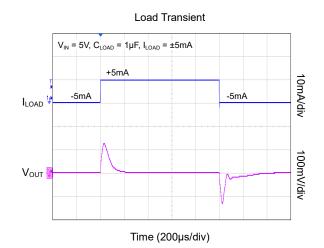


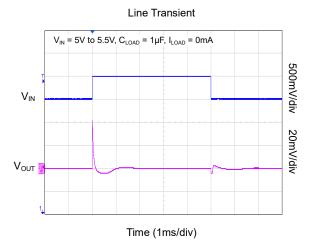


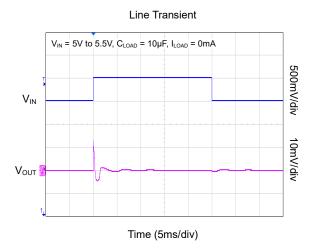

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

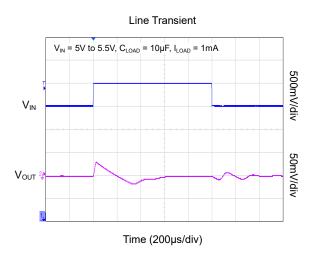


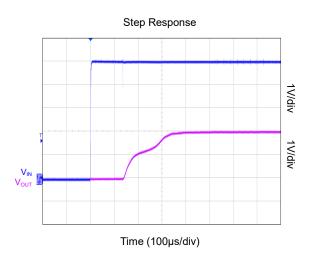


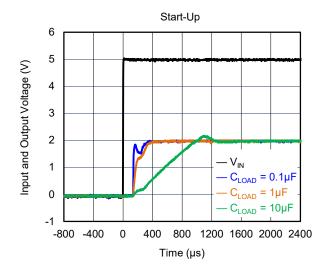







TYPICAL PERFORMANCE CHARACTERISTICS (continued)





TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTIONAL BLOCK DIAGRAM

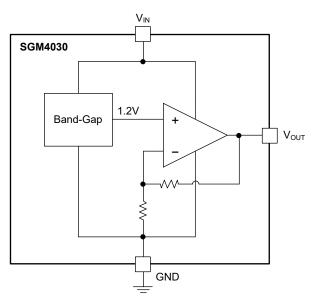


Figure 2. Block Diagram

DETAILED DESCRIPTION

The SGM4030 is a precision, low power, low noise band-gap voltage reference, which features ultra-low dropout voltage, high initial voltage accuracy and high output current. The above block diagram indicates the internal structure of SGM4030.

Feature Description Start-Up Time

There is a high-performance start-up circuit inside the SGM4030. The settling time of the output voltage is limited within 2ms.

Low Temperature Drift

The drift error for SGM4030 is significantly small, and the change of output voltage illustrates the drift of error. The Box Method is used to evaluate the temperature drift as shown in Equation 1.

Drift =
$$\left(\frac{V_{\text{OUTMAX}} - V_{\text{OUTMIN}}}{V_{\text{OUT}} \times \text{Temp Range}}\right) \times 10^6 \text{(ppm)}$$
 (1)

Thermal Hysteresis

To measure the thermal hysteresis, the V_{OUT} of the device should be measured at the temperature of +25°C. After finishing this, the SGM4030 will be cycled to the other temperatures, and then return it back to +25°C and measure the V_{OUT} again. In conclusion, this voltage difference is the hysteresis of temperature.

$$V_{HYST} = \frac{\left|V_{PRE} - V_{POST}\right|}{V_{NOM}} \times 10^{6} (ppm)$$
 (2)

where:

V_{HYST} is the thermal hysteresis.

 V_{PRE} is the output voltage measured at +25°C before the device is removed to the temperature range of -40°C to +125°C.

 V_{POST} is the output voltage measured at +25°C after the device is removed to the temperature range of -40°C to +125°C.

 V_{NOM} is the output voltage which is specified.

Power Dissipation

Within the specification of the supply voltage range, the load current of SGM4030 is specified to ±5mA. The following equation illustrates how the temperature changes with the increasing of temperature.

$$T_{J} = T_{A} + P_{D} \times \theta_{JA} \tag{5}$$

where:

T_J is the junction temperature (°C).

T_A is the ambient temperature (°C).

P_D is the power dissipated (W).

 θ_{JA} is the junction-to-ambient thermal resistance (°C/W).

The junction temperature of SGM4030 must be lower than $+125\,^{\circ}\text{C}$, which is the maximum acceptable temperature of this voltage reference.

Noise Performance

For the frequency within 0.1Hz to 10Hz, it is guaranteed that the noise level is below $32\mu V_{P-P}$ (SGM4030-2.048). The external temperature and V_{OUT} can increase the noise level. The technology of filtering can be taken into account to decrease the level of noise. However, this may increase the output impedance of SGM4030 and degrade the performance of AC output signal.

Device Functional Modes Supply Voltage

For normal operation, the minimum supply voltage should be 0.2V larger than the output voltage, except for SGM4030-1.25, whose minimum power supply voltage is 1.7V. The maximum input voltage for the SGM4030 is 5.5V.

Basic Connections

For typical connection which is shown in Figure 3, it is recommended that a supply bypass capacitor from $1\mu F$ to $10\mu F$ should be connected at the power supply pin. For the condition of capacitive load, a capacitor from $0.1\mu F$ to $10\mu F$ should be connected to the output pin for stability.

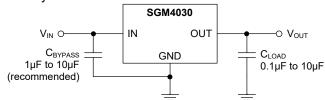


Figure 3. Basic Connections

APPLICATION INFORMATION

The SGM4030 is a precision, low power, low noise band-gap voltage reference, which features ultra-low dropout voltage, high initial voltage accuracy and high output current. The device is packaged in two tiny packages (UTQFN-1.5×1.5-8L and SOT-23), so it is suitable for the space-restricted applications.

Configuration for Bipolar Signal Chain

This circuit is used for providing a proper common mode voltage for the 16-bit sigma delta ADC. To explain, the output of SGM4030-1.25 is attenuated by R_7 and R_8 to supply AIN1 as the half point of VREFIN. The input signal is level shifted and attenuated by a low power and zero-drift operational amplifier.

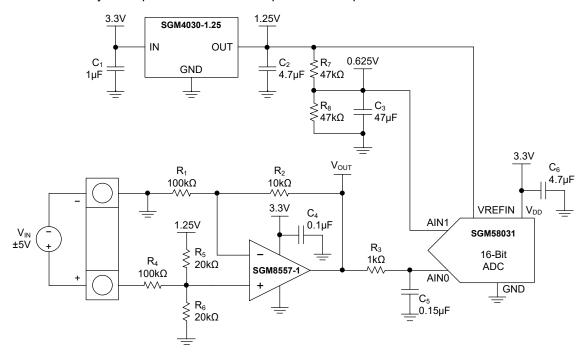


Figure 4. Bipolar Signal-Chain Configuration with SGM4030-1.25

Power Supply Recommendations

The dropout voltage for the SGM4030 is significantly low except for the SGM4030-1.25. The other SGM4030s can operate with a supply voltage that is 0.2V higher than the output voltage, under a 5mA load.

Layout

Some key considerations of printed-circuit board (PCB) layout using the SGM4030 are:

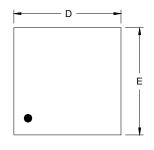
• A low ESR bypass capacitor with $1\mu F$ should be added at the input, and a $0.1\mu F$ to $10\mu F$ ceramic capacitor should be added at the output of the SGM4030 for stability.

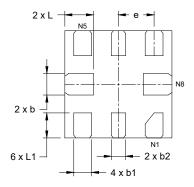
- A solid ground plane should be taken into account to decrease EMI and distribute heat.
- The external passive devices should be added as close as possible to SGM4030 in order to reduce the error which is from the parasitic parameter.
- The length of trace in PCB for the connections of ADC should be as short as possible to decrease any possible noise.
- The analog trace should not be parallel with the digital trace to prevent the crosstalk. If the PCB is complicated and the crossing of these two traces cannot be avoided, then please make them on different layers and keep them perpendicular.

12µA, Low Noise, Small Packages, **Voltage Reference**

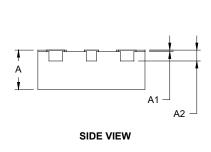
SGM4030

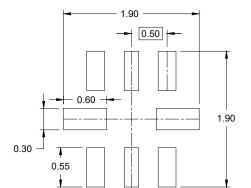
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original to REV.A (DECEMBER 2025)

Page



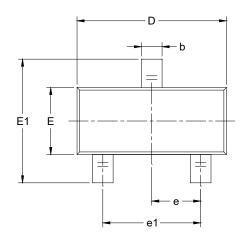

PACKAGE OUTLINE DIMENSIONS UTQFN-1.5×1.5-8L

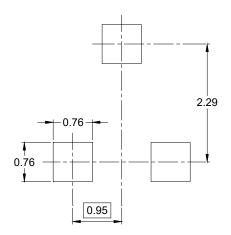
TOP VIEW

BOTTOM VIEW

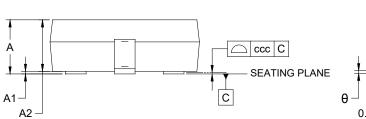
RECOMMENDED LAND PATTERN (Unit: mm)

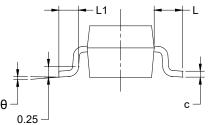
- 0.20


0.25

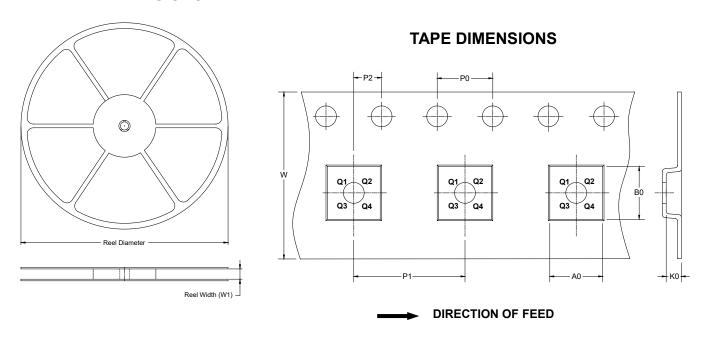

Symbol	Dimensions In Millimeters							
Symbol	MIN	NOM	MAX					
Α	0.50	0.55	0.60					
A1	0.00	0.02	0.05					
A2		0.152 REF						
b	0.25	0.30	0.35					
b1	0.20	0.25	0.30					
b2	0.15	0.15 0.20						
D		1.50 BSC						
Е		1.50 BSC						
е	0.50 BSC							
L	0.35	0.40 0.45						
L1	0.30 0.35 0.40							

NOTE: This drawing is subject to change without notice.




PACKAGE OUTLINE DIMENSIONS SOT-23

RECOMMENDED LAND PATTERN (Unit: mm)

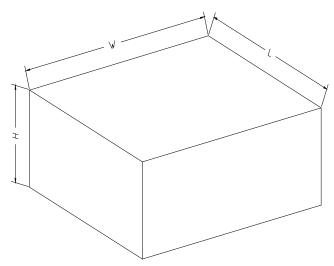


Cymhal	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
А	0.890	-	1.120				
A1	0.010	-	0.100				
A2	0.880	-	1.020				
b	0.300	0.300 -					
С	0.080	-	0.200				
D	2.800	-	3.040				
Е	1.200	-	1.400				
E1	2.100	2.100 -					
е		0.950 BSC					
e1		1.900 BSC					
L	0.540 REF						
L1	0.400	- 0.6					
θ	0°	0° - 8°					
ccc	0.100						

- 1. This drawing is subject to change without notice.
- The dimensions do not include mold flashes, protrusions or gate burrs.
 Reference JEDEC TO-236.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
UTQFN-1.5×1.5-8L	7"	9.5	1.70	1.70	0.75	4.0	4.0	2.0	8.0	Q2
SOT-23	7"	9.5	3.15	2.77	1.22	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18