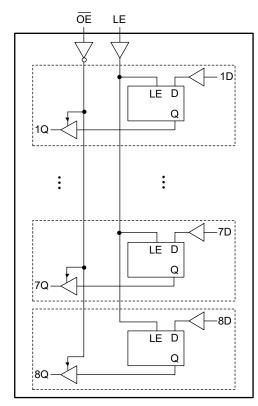


74AHC573 Octal Transparent D-Type Latch with 3-State Outputs


GENERAL DESCRIPTION

The 74AHC573 device is an octal transparent D-type latch with 3-state outputs. The supply voltage can accept any voltage from 2.0V to 5.5V.

The output enable \overline{OE} input is active low. In this case, when latch enable LE input is taken high, the Q outputs follow the data D inputs. When LE input is taken low, the Q outputs are latched to retain the set-up data. When \overline{OE} is high, all outputs are in high-impedance state.

The output enable \overline{OE} input can make all outputs in high/low logic levels or high-impedance state, which has no influence on the inner working of the latches. When the outputs are in a high-impedance state, the latch can retain old data or enter new data.

LOGIC DIAGRAM

FEATURES

- Wide Supply Voltage Range: 2.0V to 5.5V
- Input Accept Voltage Higher than the Supply Voltage
- +8mA/-8mA Output Current
- 3-State Outputs Drive Bus Lines Directly
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-20 and TSSOP-20 Packages

APPLICATIONS

Computing: Server, PC and Notebook Network Switch Telecom Infrastructure

FUNCTION TABLE

	OUTPUT		
ŌĒ	LE	nD	nQ
L	Н	Н	Н
L	н	L	L
L	L	Х	Q ₀
Н	X	X	Z

H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74440572	SOIC-20	-40°C to +125°C	74AHC573XS20G/TR	74AHC573XS20 XXXXX	Tape and Reel, 1500
74AHC573	TSSOP-20	-40°C to +125°C	74AHC573XTS20G/TR	08PXTS20 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V _{CC} 0.5V to 7.0V
Input Voltage, V ₁ ⁽²⁾ 0.5V to 7.0V
Output Voltage, $V_0^{(2)}$
Input Clamping Current, $I_{IK}(V_I < 0V)$ 20mA
Output Clamping Current, I_{OK} (V ₀ < 0V or V ₀ > V _{CC}) ±20mA
Continuous Output Current, $I_O(V_O = 0V \text{ to } V_{CC})$ ±25mA
Continuous Current (V _{CC} or GND)±75mA
Junction Temperature ⁽³⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
CDM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	2.0V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, Vo	$0V$ to V_{CC}
Output Current, Io	±8mA
Input Transition Rise or Fall Rate, $\Delta t / \Delta V \dots$	100ns/V (MAX)
Operating Temperature Range	40°C to +125°C

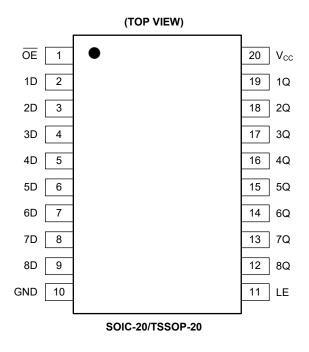
OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	ŌĒ	Output Enable Input (Active Low).
2, 3, 4, 5, 6, 7, 8, 9	1D, 2D, 3D, 4D, 5D, 6D, 7D, 8D	Data Inputs.
19, 18, 17, 16, 15, 14, 13, 12	1Q, 2Q, 3Q, 4Q, 5Q, 6Q, 7Q, 8Q	Data Outputs.
11	LE	Latch Enable Input (Active High).
10	GND	Ground.
20	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		V _{CC} = 2.0V		Full	1.50			
High-Level Input Voltage	V _{IH}			Full	2.10			V
		V _{CC} = 5.5V		Full	3.85			
		V _{CC} = 2.0V		Full			0.50	
Low-Level Input Voltage	VIL	V _{CC} = 3.0V		Full			0.90	V
		V _{CC} = 5.5V		Full			1.65	
			V_{CC} = 2.0V, I_{OH} = -50µA	Full	1.95	1.995		
			V _{CC} = 3.0V, I _{OH} = -50µA	Full	2.95	2.995		
High-Level Output Voltage	V _{он}	VI = VIH	V _{CC} = 4.5V, I _{OH} = -50µA	Full	4.45	4.495		
			$V_{CC} = 3.0V, I_{OH} = -4mA$	Full	2.60	2.820		
			V _{CC} = 4.5V, I _{OH} = -8mA	Full	4.00	4.240		
			V _{CC} = 2.0V, I _{OL} = 50µA	Full		0.005	0.05	
			V_{CC} = 3.0V, I_{OL} = 50µA	Full		0.005	0.05	
Low-Level Output Voltage	V _{OL}	$V_{I} = V_{IL}$	V _{CC} = 4.5V, I _{OL} = 50µA	Full		0.005	0.05	V
			$V_{CC} = 3.0V, I_{OL} = 4mA$	Full		0.160	0.44	
			V _{CC} = 4.5V, I _{OL} = 8mA	Full		0.260	0.44	
Input Leakage Current	I _I	$V_{\rm CC}$ = 0V to	5.5V, V _I = 5.5V or GND	Full		±0.1	±1	μΑ
Off-State Output Current	l _{oz}	$V_{CC} = 5.5V, V_I = V_{IL} \text{ or } V_{IH}, V_O = V_{CC} \text{ or } GND$		Full		±0.1	±2	μA
Supply Current	Icc	$V_{CC} = 5.5V_{c}$	$V_{CC} = 5.5V$, $V_I = V_{CC}$ or GND, $I_O = 0A$			0.1	10	μA
Input Capacitance	Cı	$V_{\rm CC} = 5.0 V_{\rm cc}$	V _I = V _{CC} or GND	+25°C		5		pF
Output Capacitance	Co	V _{CC} = 5.0V,	$V_{O} = V_{CC}$ or GND	+25°C		6		pF

DYNAMIC CHARACTERISTICS

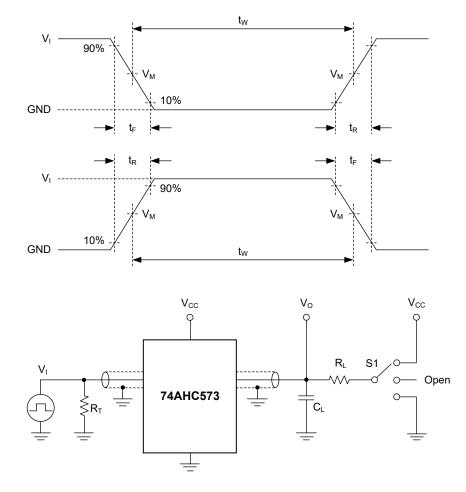
(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at TA = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
			$V_{CC} = 3.3V \pm 0.3V$	Full	1	6	14	
		nD to nQ, $C_L = 15pF$	V _{CC} = 5.0V ± 0.5V	Full	1	4	8.5	ns
			$V_{CC} = 3.3V \pm 0.3V$	Full	1	6.5	18	20
Propagation Delay ⁽²⁾	t _{PD}	nD to nQ, $C_L = 50pF$	$V_{CC} = 5.0V \pm 0.5V$	Full	1	4.5	11	ns
Fropagation Delay	чрр	LE to nQ, $C_L = 15pF$	$V_{CC} = 3.3V \pm 0.3V$	Full	1	6.5	15	20
		LE to nQ , $C_L = 15pF$	V _{CC} = 5.0V ± 0.5V	Full	1	4.5	10	ns
			$V_{CC} = 3.3V \pm 0.3V$	Full	1	7.5	19	20
		LE to nQ, $C_{L} = 50 pF$	V _{CC} = 5.0V ± 0.5V	Full	1	5	12	ns
		05 to 20 0 - 4525	$V_{CC} = 3.3V \pm 0.3V$	Full	1	6.5	14.5	20
Enable Time ⁽²⁾		\overline{OE} to nQ, C _L = 15pF	$V_{CC} = 5.0V \pm 0.5V$	Full	1	4	10	ns
	t _{EN}		$V_{CC} = 3.3V \pm 0.3V$	Full	1	7	18	
		\overline{OE} to nQ, C _L = 50pF	$V_{CC} = 5.0V \pm 0.5V$	Full	1	4.5	12	ns
		\overline{OE} to nQ, C _L = 15pF	$V_{CC} = 3.3V \pm 0.3V$	Full	1	7.5	14	ns
Disable Time ⁽²⁾	t _{DIS}		$V_{CC} = 5.0V \pm 0.5V$	Full	1	3.5	10	
			\overline{OE} to nQ, C _L = 50pF	$V_{CC} = 3.3V \pm 0.3V$	Full	1	9.5	17.5
		OE to hQ, $C_L = 50pF$	$V_{CC} = 5.0V \pm 0.5V$	Full	1	4.5	12	ns
Pulse Duration	+	LE high	$V_{CC} = 3.3V \pm 0.3V$	Full	5.5			2
	t _w		$V_{CC} = 5.0V \pm 0.5V$	Full	5.5			ns
Sat I In Time		Data bafara E	$V_{CC} = 3.3V \pm 0.3V$	Full	3.5			20
Set-Up Time	t _{s∪}	Data before LE ↓	$V_{CC} = 5.0V \pm 0.5V$	Full	3.5			ns
Hold Time	+	Data after L E	$V_{CC} = 3.3V \pm 0.3V$	Full	1.5			20
Hola Time	t _H	Data after LE ↓	$V_{CC} = 5.0V \pm 0.5V$	Full	1.5			ns
Channel-to-Channel Skew	+	$V_{CC} = 3.3V \pm 0.3V, C_{L} =$	= 50pF	+25°C			1.5	20
	t _{sko}	$V_{CC} = 5.0V \pm 0.5V, C_{L} =$	= 50pF	+25°C			1	ns
Power Dissipation Capacitance ⁽³⁾	C_{PD}	No Load, f = 1MHz, V _{co}	_c = 5.0V	+25°C		7		pF

NOTES:

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in $\mu W).$

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:


- f_i = Input frequency in MHz.
- $f_o = Output frequency in MHz.$
- C_L = Output load capacitance in pF.
- V_{CC} = Supply voltage in Volts.
- N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) =$ Sum of outputs.

74AHC573

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

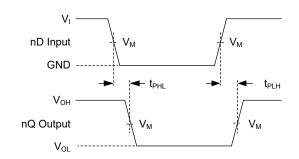
R_L: Load resistance.

 C_L : Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

S1: Test selection switch.

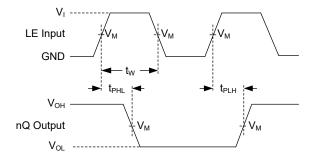
Figure 1. Test Circuit for Measuring Switching Times


Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		S1		
Vcc	Vı	t _R , t _F	C∟	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
2.0V to 5.5V	GND to V_{CC}	≤ 3.0ns	15pF, 50pF	1kΩ	Open	V _{CC}	GND

74AHC573

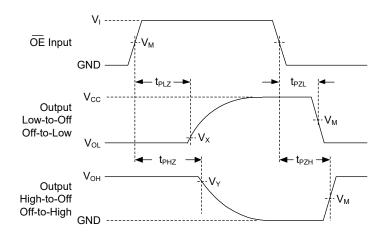
WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.



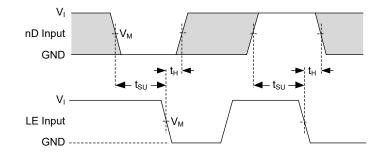
Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Latch Enable Input (LE) to Output (nQ) Propagation Delays

Test conditions are given in Table 1.


Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Enable and Disable Times

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

The shaded areas refer to when the input is allowed to change for predictable output performance.

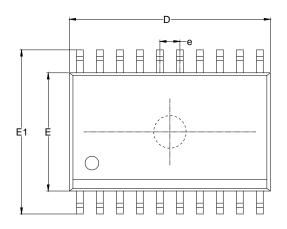
Figure 5. Set-Up and Hold Times

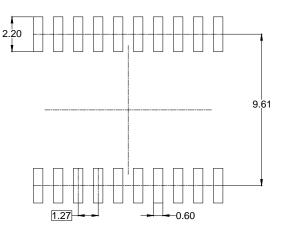
Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TUT		OUTPUT	
Vcc	VI V _M ⁽¹⁾		VM	Vx	V _Y
2.0V to 5.5V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.3V	V _{OH} - 0.3V

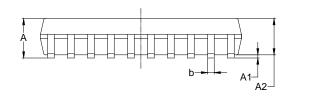
NOTE:

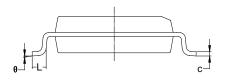
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.


REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

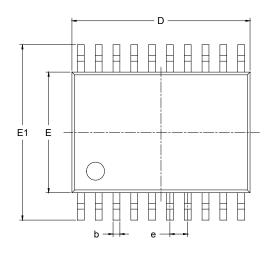
Changes from Original (JUNE 2023) to REV.A	Page
Changed from product preview to production data	

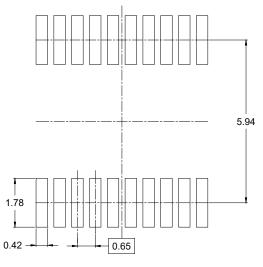


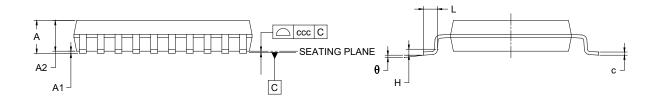

PACKAGE OUTLINE DIMENSIONS SOIC-20

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	Dimensions In Millimeters		isions ches
	MIN	MAX	MIN	MAX
A	2.350	2.650	0.093	0.104
A1	0.100	0.300	0.004	0.012
A2	2.100	2.500	0.083	0.098
b	0.330	0.510	0.013	0.020
С	0.204	0.330	0.008	0.013
D	12.520	13.000	0.493	0.512
E	7.400	7.600	0.291	0.299
E1	10.210	10.610	0.402	0.418
е	1.27	1.27 BSC		BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°


NOTES:


Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

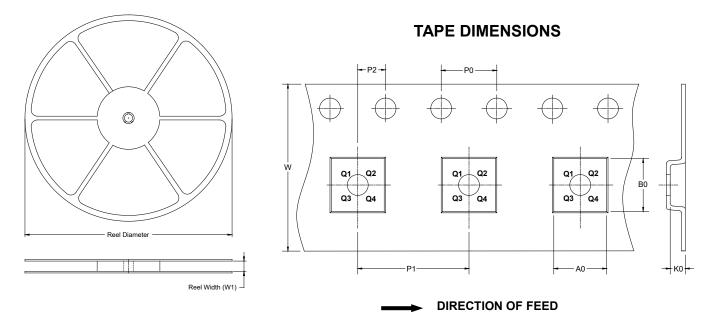

PACKAGE OUTLINE DIMENSIONS

TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

Currence al	Dimensions In Millimeters					
Symbol	MIN	MOD	МАХ			
A	-	-	1.200			
A1	0.050	-	0.150			
A2	0.800	-	1.050			
b	0.190	-	0.300			
с	0.090	-	0.200			
D	6.400	-	6.600			
E	4.300	-	4.500			
E1	6.200	-	6.600			
е		0.650 BSC				
L	0.450	-	0.750			
Н	0.250 TYP					
θ	0°	-	8°			
CCC		0.100				

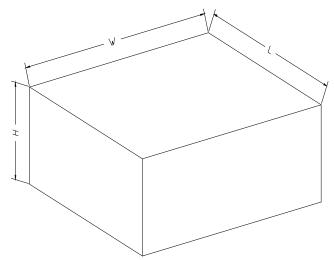
NOTES:


1. Body dimensions do not include mode flash or protrusion.

Dealy annotations are not include include

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-20	13″	24.4	10.90	13.30	3.00	4.0	12.0	2.0	24.0	Q1
TSSOP-20	13″	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

