Micro-Power, Single-Supply, WLCSP Comparator with Precision Voltage Reference

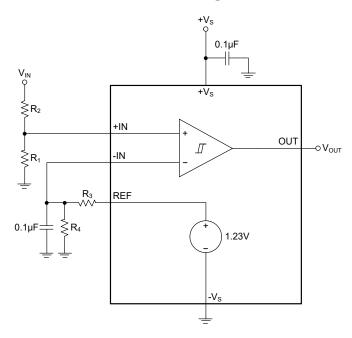
GENERAL DESCRIPTION

The SGM8756 is a single, low power comparator with a precision voltage reference. It is optimized for low voltage operation from 2.5V to 5.5V single supply, and consumes only $40\mu A$ supply current. These two advantages make the device a good choice for portable and battery-powered equipment. Meanwhile, the SGM8756 has a great trade-off between low power and high speed, whose propagation delay is only 280ns with 100mV overdrive.

The SGM8756 supports rail-to-rail input and output operation. The input common mode voltage range is from -V $_{\rm S}$ to +V $_{\rm S}$. The device has an input offset voltage of ± 3 mV (MAX) and an input bias current of ± 0.1 nA (TYP). The SGM8756 has a push-pull output structure, which is capable of sinking and sourcing milliamps of current. The comparator output structure is specially designed to decrease the surges of supply current during switching. It can sufficiently reduce the overall power consumption in dynamic states, and almost eliminate many common power faults found in other comparators. The SGM8756 has an internal hysteresis for reducing comparator sensitivity to noise, even when the input signals move slowly.

The SGM8756 integrates a 1.23V voltage reference. The voltage reference features a low temperature drift of 100ppm/ $^{\circ}$ C (MAX) and a high accuracy of $\pm 0.4\%$ (MAX).

The SGM8756 is available in a Green WLCSP-1.4×0.9-6B package. It is specified over the operating temperature range of -40°C to +125°C.


FEATURES

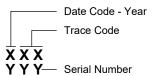
- Supply Voltage Range: 2.5V to 5.5V
- Low Supply Current:
 - 40µA (TYP) Quiescent Current
 - 50µA with 100kHz Switching at 5V
- Low Propagation Delay: 280ns (TYP)
- Rail-to-Rail Input and Output
- Push-Pull Output
- Sink and Source Current Capability: 100mA (TYP)
- Internal Hysteresis: 5mV (TYP)
- Internal Voltage Reference:
 - Accuracy: ±0.4% (MAX)
 - Temperature Drift: 100ppm/°C (MAX)
 - Stable Output Capacitor Range: 0nF to 4.7nF
- -40°C to +125°C Operating Temperature Range
- Available in a Green WLCSP-1.4×0.9-6B Package

APPLICATIONS

Industrial Equipment Medical Equipment Telecom Equipment

TYPICAL APPLICATION

Figure 1. Typical Application Circuit



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE SPECIFIED TEMPERATURE RANGE		ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM8756	WLCSP-1.4×0.9-6B	-40°C to +125°C	SGM8756XG/TR	XXX 1SO	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XXX = Date Code and Trace Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, $+V_S$ to $-V_S$
Current into Input Pins±20mA
Package Thermal Resistance
WLCSP-1.4×0.9-6B, θ _{JA} 147.1°C/W
WLCSP-1.4×0.9-6B, θ _{JB} 45.1°C/W
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (1)(2)
HBM±8000V
CDM±1000V

NOTES:

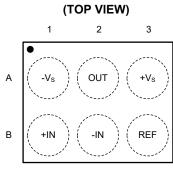
- 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2.5V to 5.5V
Power Supply Rise Time	20µs (MIN)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

WLCSP-1.4×0.9-6B

PIN DESCRIPTION

PIN	NAME	FUNCTION
A1	-Vs	Negative Power Supply.
A2	OUT	Output of Comparator.
А3	+V _S	Positive Power Supply.
B1 +IN		Non-Inverting Input of Comparator.
B2 -IN		Inverting Input of Comparator.
B3 REF		Output of Voltage Reference.

ELECTRICAL CHARACTERISTICS

 $(+V_S = 2.5V \text{ to } 5.5V, -V_S = 0V, V_{CM} = 0V, I_{OUT} = 0A, I_{REF} = 0A, \text{minimum and maximum values are at } T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ and typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

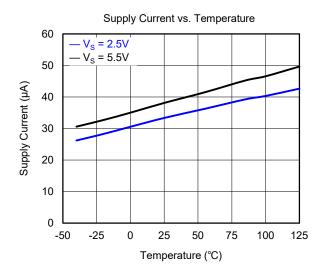
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Supply Voltage Range	Vs			2.5		5.5	V	
Comple Compant		V _S = 2.5V			35	70		
Supply Current	Is	V _S = 5.5V			40	80	μA	
Comparator								
Input Offset Voltage (1)	Vos	$V_{CM} = 0V \text{ to } V_{S}$	V _S = 2.5V		±0.5	±3.5	m\/	
input Onset voltage ···	Vos	V _{CM} - UV tO V _S	V _S = 5.5V		±0.5	±3	mV	
Input Hysteresis	V _{HYST}			2.4	5	8.7	mV	
Input Bias Current	I _B	V _{CM} = 0V to V _S			±0.1	±20	nA	
Input Offset Current	los	V _{CM} = 0V to V _S			±0.1	±5	nA	
Input Common Mode Voltage Range	V _{CM}			-Vs		+Vs	V	
Common Mode Rejection Retic	CMDD	$V_{CM} = 0V \text{ to } V_{S}$	V _S = 2.5V	53	76		dB	
Common Mode Rejection Ratio	CMRR	V _{CM} - UV tO V _S	V _S = 5.5V	62	83			
Power Supply Rejection Ratio	PSRR				80		dB	
Input Capacitance	C _{IN}	V _S = 5V			5.5		pF	
	I _{SINK}	$V_{OUT} = +V_{S}$	V _S = 2.5V	35	65		- mA	
Output Short-Circuit Current		V _{OUT} - +V _S	V _S = 5.5V	60	85			
Output Short-Circuit Current		$V_{OUT} = -V_{S}$	V _S = 2.5V	35	60			
	I _{SOURCE}	V _{OUT} V _S	V _S = 5.5V	65	100			
Output Voltage Low	V _{OL}	V _S = 2.5V, I _{SINK} = 3.5mA			0.08	0.1	V	
Output voltage Low	VOL	$V_S = 5.5V$, $I_{SINK} = 8mA$			0.15	0.18	V	
Output Voltage High	V _{OH}	V _S = 2.5V, I _{SOURCE} = 3.5mA		2.43	2.46		V	
Output voltage High	VOH	V _S = 5.5V, I _{SOURCE} = 8mA			5.45			
		C _L = 15pF			16			
Rise/Fall Time	t_R/t_F	C _L = 50pF			20		ns	
		C _L = 200pF			30			
Propagation Delay (2)	+ /+	V 05V 0 45°F	Overdrive = 50mV		290		ns	
Fropagation Delay	t _{PLH} /t _{PHL}	$V_S = 2.5V, C_L = 15pF$	Overdrive = 100mV		280			
Power-Up Time	t _{PU}	Time to V _{OUT} valid logic state	Time to V _{OUT} valid logic state		12		μs	

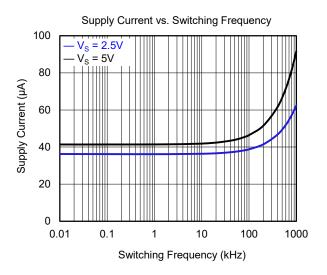
NOTES:

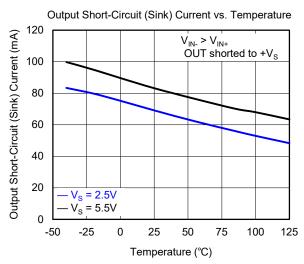
- 1. Input offset voltage is the midway voltage for the hysteresis zone of the comparator.
- 2. The trip point determined by offset and hysteresis is exceeded by overdrive voltage.

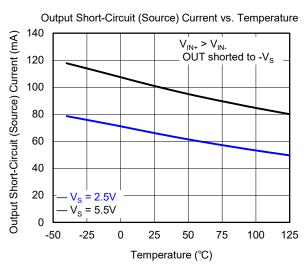
ELECTRICAL CHARACTERISTICS (continued)

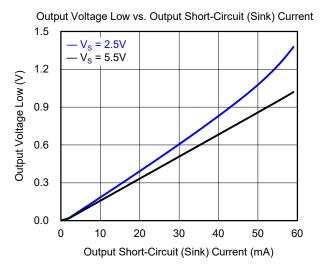
 $(+V_S = 2.5V \text{ to } 5.5V, -V_S = 0V, V_{CM} = 0V, I_{OUT} = 0A, I_{REF} = 0A, \text{minimum and maximum values are at } T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ and typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

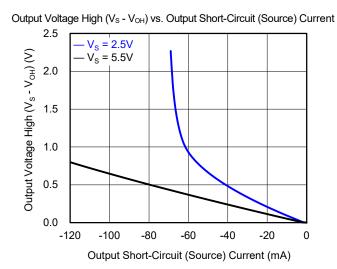

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
Voltage Reference									
Output Voltage Reference	V_{REF}	T _A = +25°C	1.225	1.23	1.235	V			
Output Voltage Temperature Drift (3)	$\Delta V_{REF}/\Delta T$			16	100	ppm/°C			
Line Regulation	ΔV _{REF} /ΔV _S			20	100	μV/V			
Load Regulation	۸۱/ /۸۱	Sinking: I _{REF} = 0μA to 500μA		0.5	1	\//^			
Load Regulation	$\Delta V_{REF}/\Delta I_{REF}$	Sourcing: I _{REF} = 0µA to 500µA		0.5	1	μV/μA			
Output Short Circuit Current	I _{SINK}	V _{REF} = +V _S	4	6		mA			
Output Short-Circuit Current	I _{SOURCE}	V _{REF} = -V _S	2.5	6					
Thermal Hysteresis ⁽⁴⁾	T _{HYST}			100		ppm			
Long-Term Stability		1000h at T _A = +25°C		100		ppm			
Ripple Rejection	$\Delta V_{REF}/\Delta V_{S}$	V _S = 5V ± 100mV, f = 120Hz		88		dB			
Turn-On Settling Time	t _{R_VREF}	To V _{REF} = 1% of final value		55		μs			
Stable Output Capacitor Range (3)	C_{L_VREF}		0		4.7	nF			

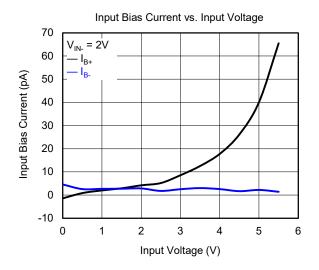

NOTES:

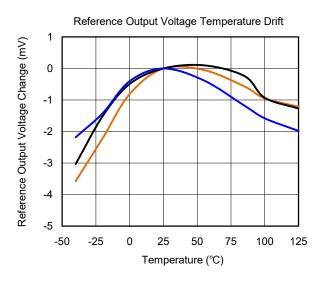

- 3. Specified by design and characterization, not production tested.
- 4. Thermal hysteresis is defined as the output voltage difference of the reference at $+25^{\circ}$ C after three temperature excursions, each starting from $+25^{\circ}$ C, rising to $+125^{\circ}$ C, dropping to -40° C, and returning to $+25^{\circ}$ C.

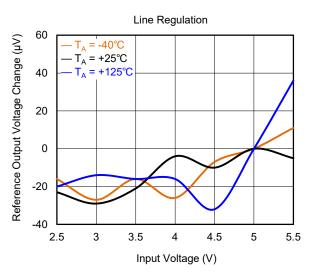

TYPICAL PERFORMANCE CHARACTERISTICS

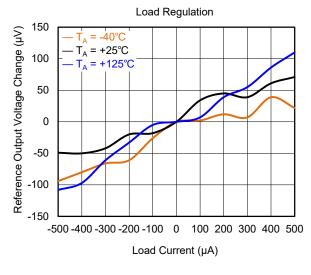

At $T_A = +25^{\circ}C$, $+V_S = 5V$, $-V_S = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, unless otherwise noted.

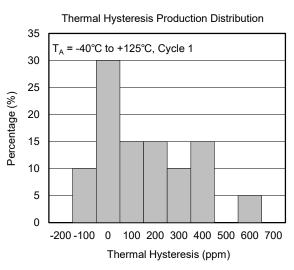


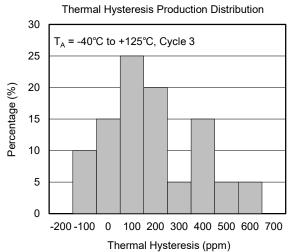


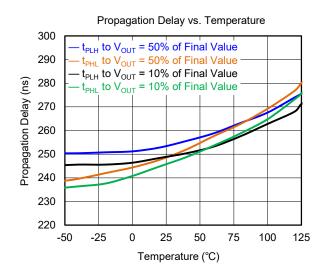


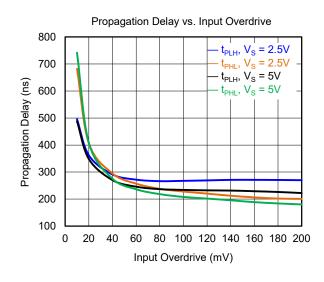


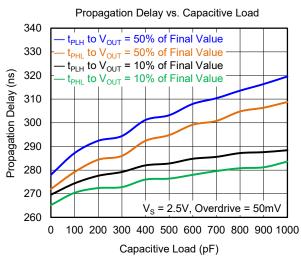

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

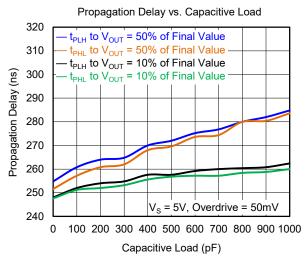

At T_A = +25°C, +V_S = 5V, -V_S = 0V, V_{CM} = 0V, I_{OUT} = 0A, I_{REF} = 0A, unless otherwise noted.

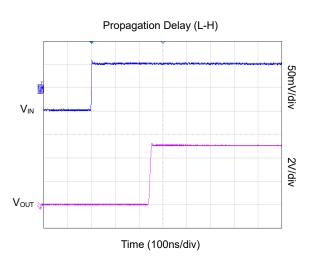


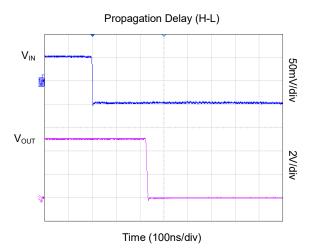


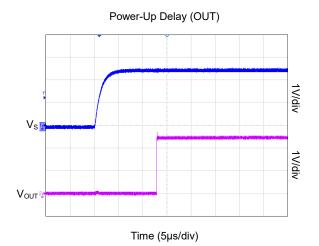


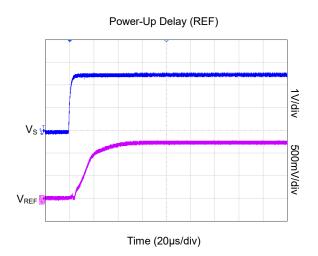


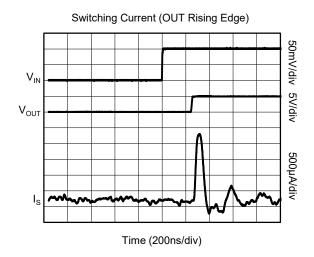

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

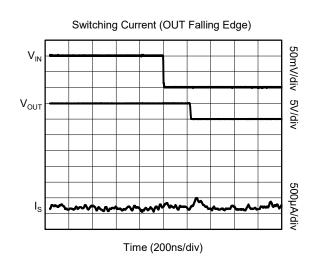

At $T_A = +25$ °C, $+V_S = 5V$, $-V_S = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, unless otherwise noted.










TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25$ °C, $+V_S = 5$ V, $-V_S = 0$ V, $V_{CM} = 0$ V, $I_{OUT} = 0$ A, $I_{REF} = 0$ A, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

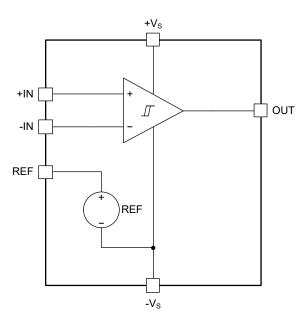


Figure 2. Block Diagram

DETAILED DESCRIPTION

The SGM8756 comprises a single comparator that operates at low power and voltage levels, along with a precise 1.23V voltage reference. SGM8756 is optimized for low voltage operation from 2.5V to 5.5V single supply, consuming only $40\mu A$ quiescent current. The common mode range extends 0.3V beyond the power supply voltage rails.

Internal Hysteresis

The 5mV internal hysteresis of the SGM8756 guarantees clear output switching, even when dealing with input signals that change slowly.

Comparator Input

The input common mode range of the comparator spans from $-V_S$ to $+V_S$. Within these boundaries, the comparator can function with any differential input voltage. When the input voltage lies between the supply rails, the typical input bias current is $\pm 0.1 \text{nA}$. To protect the inputs of the comparator from going out of range, the internal diode connected to $-V_S$ is taken into account. To explain, the internal diode will be forward biased if the input voltage is below $-V_S$ and the input bias current of the comparator will increase exponentially in this situation.

Comparator Output

The SGM8756 has a push-pull output structure, which is specially designed to decrease the surges of supply current during switching. It can sufficiently reduce the overall power consumption in dynamic states, and almost eliminate many common power faults found in other comparators. The incorporation of substantial internal output drivers enables a rail-to-rail output swing capable of sinking and sourcing currents of up to 100mA.

Reference Performance

The temperature drift of reference is just 100ppm/°C (MAX) and the accuracy of the output voltage is significantly high, being within ±0.4%.

The voltage reference remains stable when subjected to capacitive loads of up to 4.7nF. In scenarios where the load or power supply may undergo abrupt changes, attaching an output capacitor to the REF pin can mitigate overshoot or undershoot and enhance the circuit's transient response. The reference load current cannot exceed the reference short-circuit current. Otherwise, it may cause a drop in the reference voltage.

APPLICATION INFORMATION

Adding External Hysteresis

The effect of significant input noise is an issue that has to be taken into consideration for applications with slow moving or noisy input signals. The output will switch as the result of the input noise, although there is 5mV internal hysteresis. For this case, it is recommended to add external resistors at the positive terminal of the comparator. For the circuit shown in Figure 3 and the following formula, the external hysteresis can be obtained. The noise immunity is improved.

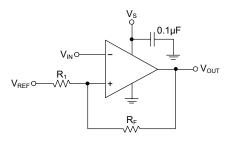


Figure 3. Additional Hysteresis

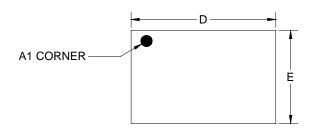
$$V_{HYS} = V_{S}(\frac{R_{1}}{R_{F} + R_{1}})$$
 (1)

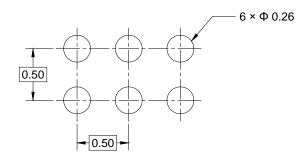
Power Supply Recommendations

A 100nF bypass capacitor must be placed as close as possible to the $+V_S$ pin, and try to keep the wiring as short as possible. The 100nF capacitor provides a charge for high-frequency component. The SGM8756 is not recommended for applications requiring rapid cycling of V_S . It is better to power down V_S to 0V for more than 1s before powering it on again.

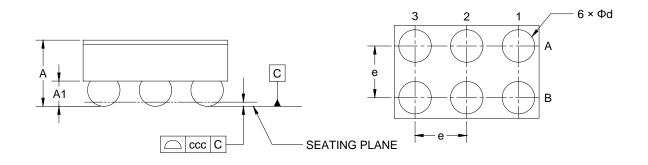
Micro-Power, Single-Supply, WLCSP Comparator with Precision Voltage Reference

SGM8756


REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

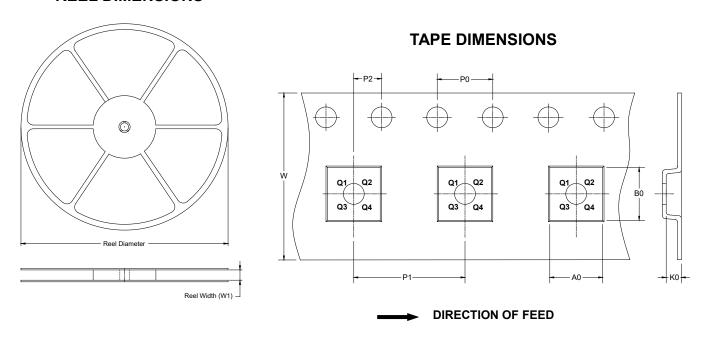
Changes from Original (SEPTEMBER 2025) to REV.A	Page
Changed from product preview to production data	All


PACKAGE OUTLINE DIMENSIONS WLCSP-1.4×0.9-6B

TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

SIDE VIEW

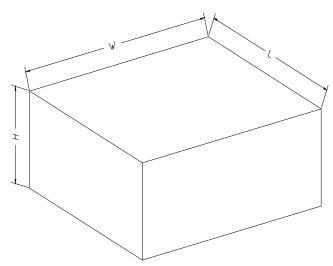

BOTTOM VIEW

Symbol	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
Α	•	0.678					
A1	0.224	-	0.264				
D	1.370	-	1.430				
Е	0.870	-	0.930				
d	0.284	0.344					
е	0.500 BSC 0.050						
ccc							

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-1.4×0.9-6B	7"	9.5	1.00	1.50	0.77	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002