

40V, 300mA, Low Quiescent Current and Low Dropout Voltage Linear Regulator

GENERAL DESCRIPTION

The SGM2249xQ is a high voltage, low quiescent current and low dropout voltage linear regulator. It is capable of supplying 300mA output current with typical dropout voltage of 740mV. The operating input voltage range is from 2.5V to 40V and output voltage range is from 0.6V to 24V.

Other features include current limit and thermal shutdown protection. The SGM2249xQ is suitable for various automotive applications.

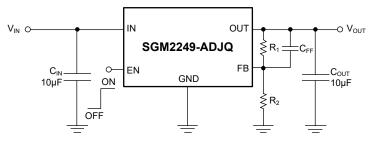
This device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The SGM2249xQ is available in a Green MSOP-8 (Exposed Pad) package. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1

SGM2249xQ


Automotive

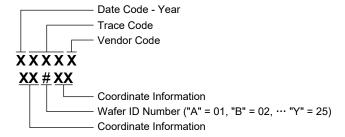
- $T_A = -40^{\circ}C$ to +125°C
- Operating Input Voltage Range: 2.5V to 40V
- Enable Pin Accept Voltages Higher than the Supply Voltage and up to 40V
- Adjustable Output from 0.6V to 24V
- 300mA Output Current
- Output Voltage Accuracy: ±1% at +25℃
- Low Quiescent Current: 3.2µA (TYP)
- Low Dropout Voltage:
 740mV (TYP) at 300mA, V_{OUT} = 24V
- Current Limiting and Thermal Protection
- With Output Automatic Discharge
- Stable with Small Case Size Ceramic Capacitors
- -40°C to +125°C Operating Temperature Range
- Available in a Green MSOP-8 (Exposed Pad) Package

APPLICATIONS

Industrial Equipment
Automotive Applications
Battery-Powered Equipment
Medical Equipment

TYPICAL APPLICATION

Figure 1. Typical Application Circuit



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM2249-ADJQ	MSOP-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2249-ADJQPMS8G/TR	1UZPMS8 XXXXX XX#XX	Tape and Reel, 4000	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number. **MSOP-8 (Exposed Pad)**

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

IN, EN to GND	0.3V to 45V
OUT to GND	0.3V to 45V
FB to GND	0.3V to 45V
Package Thermal Resistance	
MSOP-8 (Exposed Pad), θ _{JA}	47.6°C/W
MSOP-8 (Exposed Pad), θ _{JB}	23.1°C/W
MSOP-8 (Exposed Pad), θ _{JC(TOP)}	54.8°C/W
MSOP-8 (Exposed Pad), θ _{JC(BOT)}	8.3°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility (1)(2)	
HBM	±6000V
CDM	±1000V

NOTES:

- 1. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
- 2. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.

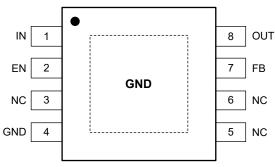
RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{IN}	2.5V to 40V
Enable Input Voltage Range	0V to 40V
Input Effective Capacitance, C _{IN}	0.5µF (MIN)
Output Effective Capacitance, C _{OUT}	1µF to 100µF
Operating Ambient Temperature Range	40°C to +125°C
Operating Junction Temperature Range	40°C to +150°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

SGM2249-ADJQ (TOP VIEW)

MSOP-8 (Exposed Pad)

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	IN	Input Supply Voltage Pin. It is recommended to use a 1µF or larger ceramic capacitor from IN pin to ground to get good power supply decoupling. This ceramic capacitor should be placed as close as possible to IN pin.
2	EN	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator.
3, 5, 6	NC	No Connection.
4	GND	Ground.
7	FB	Feedback Voltage Input Pin. Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.
8	OUT	Regulator Output Pin. It is recommended to use a ceramic capacitor with effective capacitance in the range of 1µF to 100µF to ensure stability. This ceramic capacitor should be placed as close as possible to OUT pin.
Exposed Pad	GND	Exposed Pad. Connect it to GND internally. Connect it to a large ground plane to maximize thermal performance. This pad is not an electrical connection point.

FUNCTIONAL BLOCK DIAGRAM

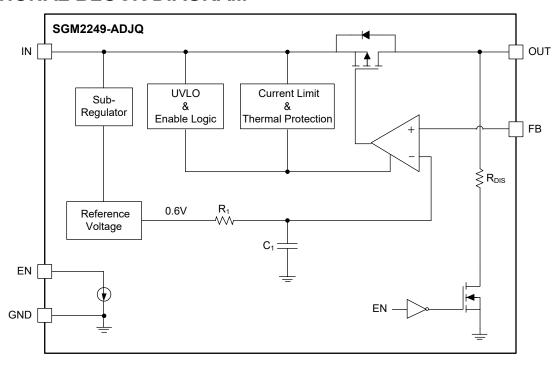
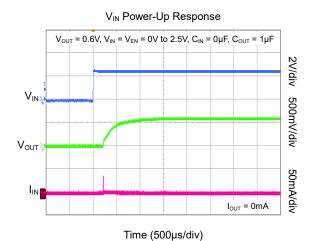


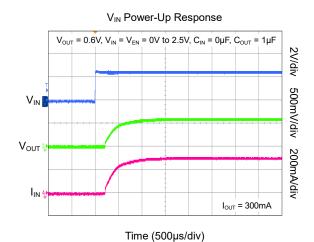
Figure 2. Block Diagram of Adjustable Output Version

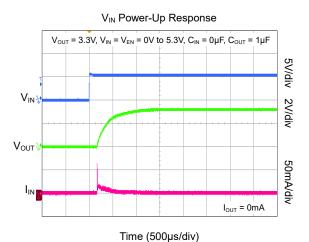
Automotive 40V, 300mA, Low Quiescent Current and Low Dropout Voltage Linear Regulator

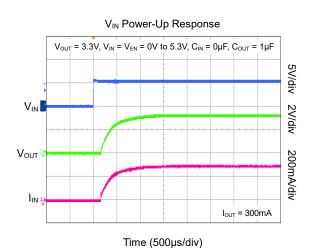
ELECTRICAL CHARACTERISTICS

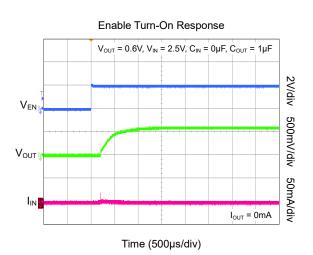
 $(V_{IN} = V_{OUT(NOM)} + 2V, C_{IN} = 10\mu F, C_{OUT} = 10\mu F, C_{FF} = 0nF, T_J = -40^{\circ}C$ to +125°C ⁽¹⁾, typical values are at $T_J = +25^{\circ}C$, unless otherwise noted.)

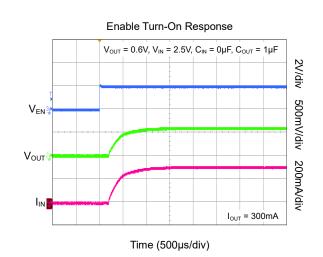

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}			2.5		40	V
Output Voltage Range	V _{OUT}			0.6		24	V
Output Valtage Assuracy	V	$V_{IN} = (V_{OUT(NOM)} + 2V)$ to 40V,	T _J = +25°C	-1		+1	- %
Output Voltage Accuracy	V_{OUT}	I _{OUT} = 1mA	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	-2		+1.5	70
Feedback Voltage	V_{FB}	$V_{IN} = (V_{OUT(NOM)} + 2V)$ to 40V,	T _J = +25°C	0.594	0.6	0.606	V
reedback voltage	V _{FB}	4 A		0.588	0.6	0.609	V
FB Pin Input Current	I_{FB}	$V_{FB} = 0.7V$			0.1	100	nA
Under-Voltage Lockout	V_{UVLO}	V _{IN} rising			2.1	2.48	V
Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	$V_{IN} = (V_{OUT(NOM)} + 2V)$ to 40V, I_{O}	_{UT} = 0.1mA		0.0002	0.02	%/V
Load Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta I_{\text{OUT}} \times V_{\text{OUT}}}$	I _{OUT} = 0.1mA to 300mA			0.0002	0.005	%/mA
Dropout Voltage	V_{DROP}	$V_{\text{OUT(NOM)}} = 24\text{V}, V_{\text{OUT}} = 95\% \times V_{\text{OUT(NOM)}}$			245	500	m\/
Dropout Voltage	V DROP		$I_{OUT} = 300 \text{mA}$		740	1500	mV
Output Current Limit	I _{LIMIT}	$V_{\text{OUT(NOM)}} = 24V, V_{\text{OUT}} = 90\% \times V_{\text{OUT(NOM)}},$ $V_{\text{IN}} = V_{\text{OUT}} + 4V$		300	650		mA
Short-Circuit Current Limit	I _{SHORT}	$V_{OUT} = 0V$, $V_{IN} = V_{OUT(NOM)} + 3V$			265		mA
Ground Pin Current	I_{GND}	I _{OUT} = 0mA			3.2	8	μА
Ground i in Garrent	IGND	I _{OUT} = 300mA			125	260	
Shutdown Supply Current	I _{SHDN}	V _{EN} = 0V, V _{IN} = 2.5V to 40V			0.3	1.5	μΑ
EN Pin High-Level Input Voltage	V_{IH}	V _{IN} = 2.5V to 40V		1.8		40	V
EN Pin Low-Level Input Voltage	V_{IL}	V _{IN} = 2.5V to 40V		0		1	V
EN Pin Input Current	I _{EN}	V _{EN} = 0V, V _{IN} = 40V			5	500	nA
	·EIN	$V_{EN} = 40V, V_{IN} = 40V$			50	1000	II/\
Output Discharge Resistance	R _{DIS}	V _{EN} = 0V			215		Ω
Turn-On Time	t _{ON}	From assertion of V_{EN} to $V_{OUT} = V_{OUT(NOM)} = 0.6V$	= 90% × V _{OUT(NOM)} ,		0.83	1.3	ms
		\\ -06\\\\ -25\\	f = 100Hz		69		
		$V_{OUT} = 0.6V, V_{IN} = 2.5V$ $I_{OUT} = 10mA, C_{OUT} = 4.7\mu F$	f = 1kHz		52		
Power Supply Ripple Rejection	PSRR		f = 100kHz		39		dB
Tower Supply Ripple Rejection		\\ -22\\\\ -52\\	f = 100Hz		63		"-
		$V_{OUT} = 3.3V$, $V_{IN} = 5.3V$, $I_{OUT} = 10$ mA, $C_{OUT} = 4.7\mu$ F	f = 1kHz		45		
			f = 100kHz	1	43		
Output Voltage Noise	e _n	$I_{OUT} = 10 \text{mA}, C_{OUT} = 4.7 \mu \text{F},$ $V_{OUT} = 0.6 \text{V}$		1	46		μV _{RMS}
, ,		f = 10Hz to 100kHz	$V_{OUT} = 3.3V$	1	164		
Thermal Shutdown Temperature	T _{SHDN}				160		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}						°C

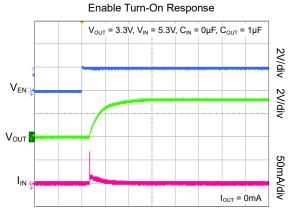

NOTE:

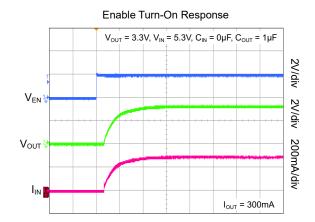

1. Tested under pulse load conditions, so $T_J \approx T_A$.

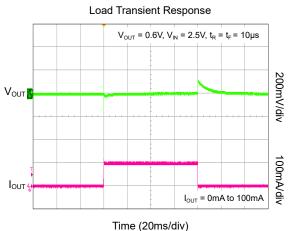


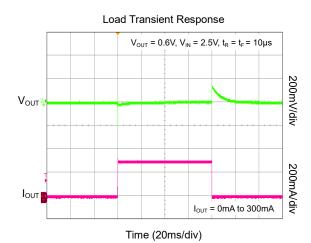

TYPICAL PERFORMANCE CHARACTERISTICS

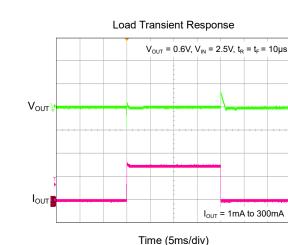


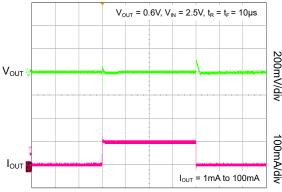


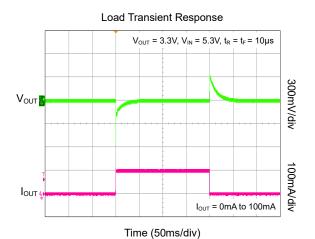


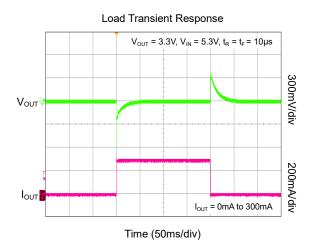

 T_J = +25°C, V_{EN} = V_{IN} , C_{IN} = 10 μ F, C_{OUT} = 10 μ F, C_{FF} = 0nF, unless otherwise noted.

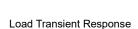


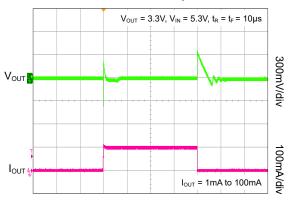



Time (500µs/div)

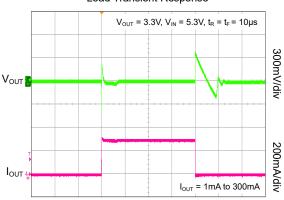

Load Transient Response

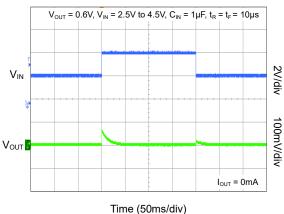


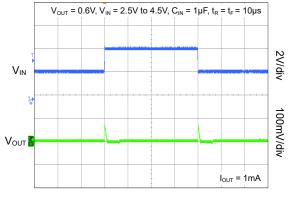

Time (5ms/div)


200mV/div

 T_J = +25°C, V_{EN} = V_{IN} , C_{IN} = 10 μ F, C_{OUT} = 10 μ F, C_{FF} = 0nF, unless otherwise noted.

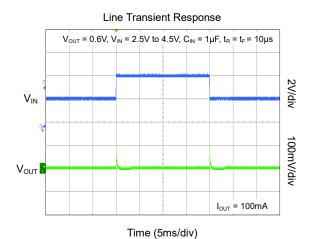


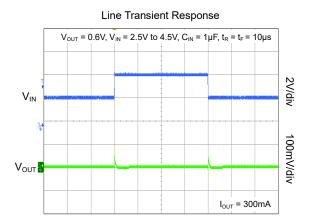

Load Transient Response

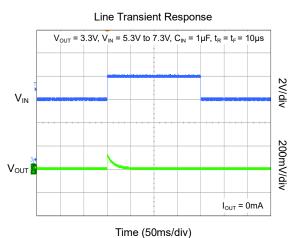

Time (5ms/div)

Time (5ms/div)

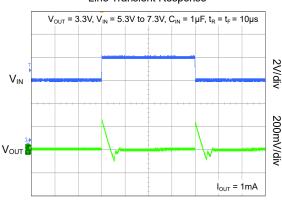
Line Transient Response

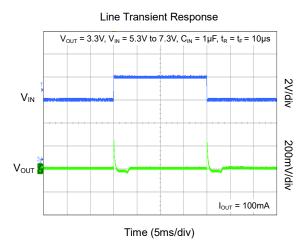



Line Transient Response


Time (5ms/div)

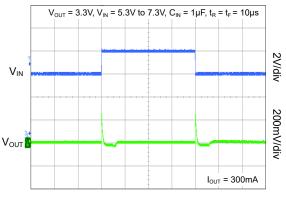
 T_J = +25°C, V_{EN} = V_{IN} , C_{IN} = 10 μ F, C_{OUT} = 10 μ F, C_{FF} = 0nF, unless otherwise noted.



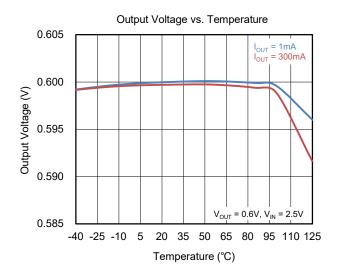


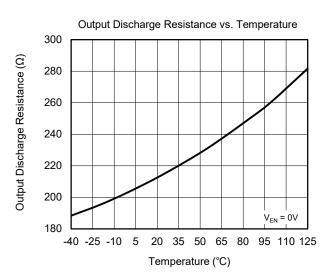
Line Transient Response

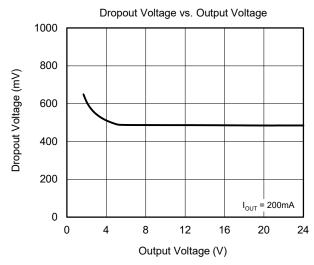
Time (5ms/div)

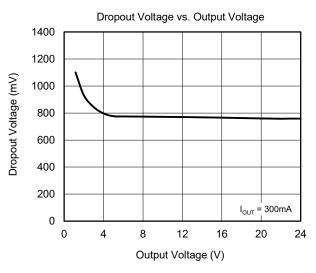


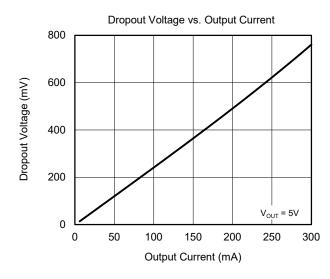
,

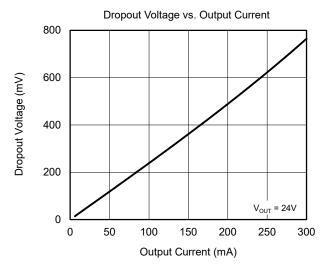


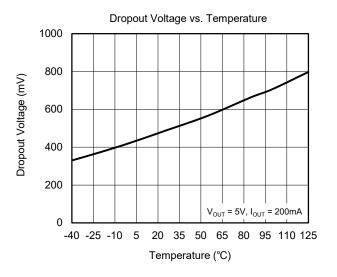

Line Transient Response

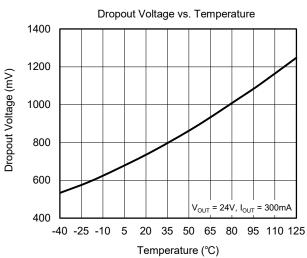

Time (5ms/div)

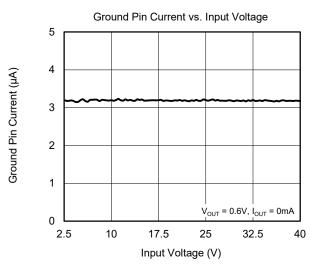


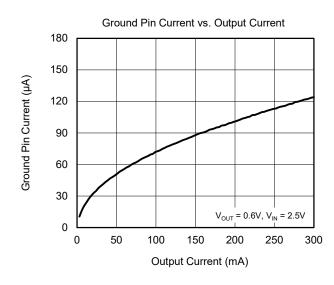

Time (5ms/div)

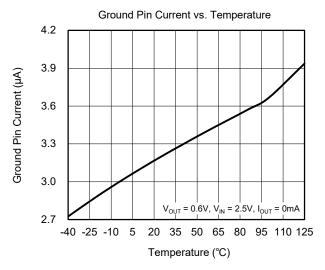


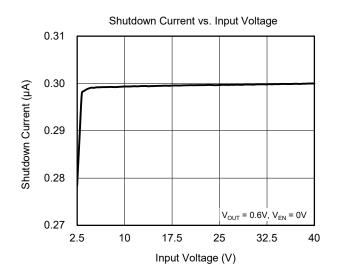


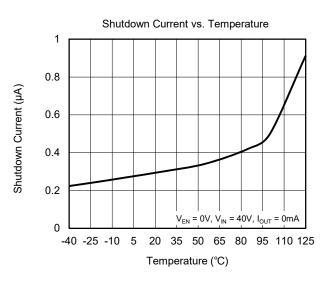


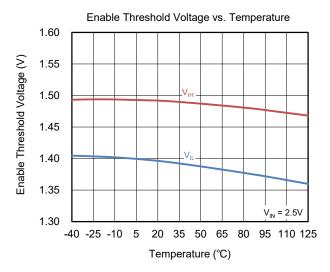


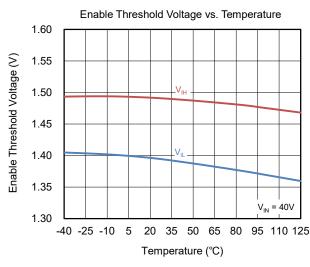


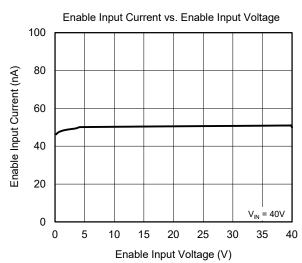


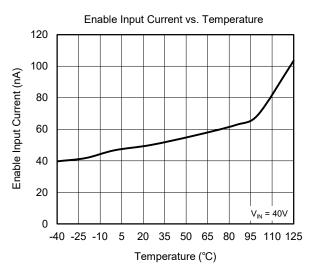


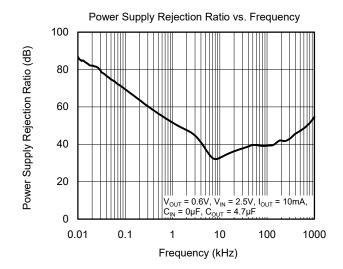


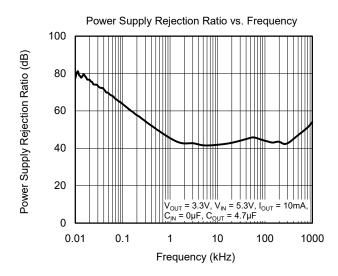


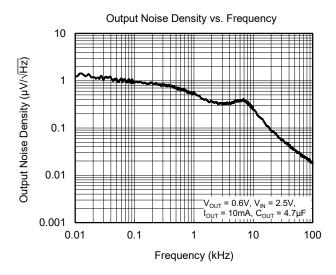


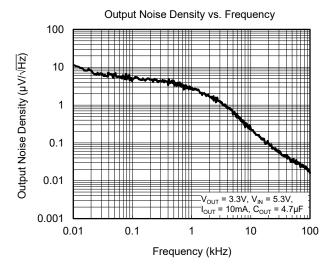












APPLICATION INFORMATION

The SGM2249xQ is a high voltage, low quiescent current and low dropout LDO and provides 300mA output current. These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply. The high performance also makes the SGM2249xQ useful in a variety of applications. The SGM2249xQ provides protection functions for output overload and overheating.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor should be placed as close as possible to the IN pin to ensure the device stability. 1µF or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings. For C_{OUT} with larger capacitance, it is recommended to choose the larger capacitance C_{IN} .

Output Capacitor Selection (Cout)

One or more output capacitors are required to maintain the stability of the LDO, and the output capacitors should be placed as close as possible to the OUT pin. In addition, in order to obtain the best transient performance, it is recommended to use X7R and X5R ceramic capacitors as output capacitors. Ceramic capacitors have low equivalent series resistance (ESR), excellent temperature and DC bias characteristics. However, it cannot be ignored that the effective capacitance of ceramic capacitors is affected by temperature, DC bias and package size.

For example, Figure 3 shows the capacitance and DC bias and temperature characteristics of 0805, 10V, $10\mu F\pm 10\%$, X7R capacitor. Therefore, it is necessary to evaluate whether the effective capacitance of the output capacitor can meet the stability requirements of the LDO in practical applications. In general, a capacitor in higher voltage rating and a larger package exhibits better stability, and the effective capacitance can be obtained from the manufacturer datasheet.

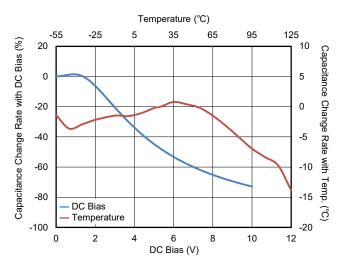


Figure 3. Capacitance vs. DC Bias and Temperature Characteristics

The SGM2249xQ requires a minimum effective capacitance of $1\mu F$ for C_{OUT} to ensure stability. Additionally, C_{OUT} with larger capacitance and lower ESR will help increase the high frequency PSRR and improve the load transient response.

Adjustable Regulator

The output voltage of the SGM2249-ADJQ can be adjusted from 0.6V to 24V. The FB pin will be connected to two external resistors as shown in Figure 4. The output voltage is determined by the following equation:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right) \tag{1}$$

where:

 V_{OUT} is output voltage and V_{FB} is the internal voltage reference, V_{FB} = 0.6V. One parallel capacitor (C_{FF}) with R_1 can be used to improve the feedback loop stability and PSRR, increase the transient response and reduce the output noise. R_1 and R_2 can be calculated for any output voltage range using equation 1. Choose $R_2 \le 500 k\Omega$ to maintain a 1.2µA minimum load.

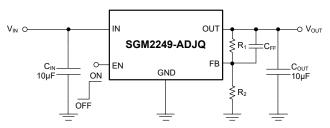


Figure 4. Adjustable Output Voltage Application

APPLICATION INFORMATION (continued)

Enable Operation

The EN pin of the SGM2249xQ is used to enable/disable the device and to deactivate/activate the output automatic discharge function.

When the EN pin voltage is lower than 1V, the device is in shutdown state. There is no current flowing from IN to OUT pins. In this state, the automatic discharge transistor is active to discharge the output voltage through a 215Ω (TYP) resistor.

When the EN pin voltage is higher than 1.8V, the device is in active state. The output voltage is regulated to the expected value and the automatic discharge transistor is turned off.

Reverse Current Protection

The PMOS power transistor has an inherent body diode. This body diode will be forward biased when $V_{\text{OUT}} > V_{\text{IN}}$. When $V_{\text{OUT}} > V_{\text{IN}}$, the reverse current flowing from the OUT pin to the IN pin will damage the SGM2249xQ. If reverse current protection function is needed in application, the circuit in Figure 5 is good solution to provide reverse current protection.

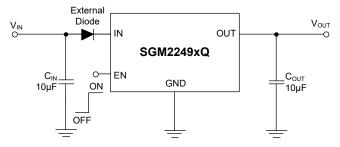


Figure 5. Reverse Protection Reference Design

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 650mA (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 265mA (TYP).

Thermal Shutdown

When the die temperature exceeds the threshold value of thermal shutdown, the SGM2249xQ will be in shutdown state and it will remain in this state until the die temperature decreases to +140°C.

Power Dissipation (P_D)

Power dissipation (P_D) of the SGM2249xQ can be calculated by the equation $P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$. The maximum allowable power dissipation ($P_{D(MAX)}$) of the SGM2249xQ is affected by many factors, including the difference between junction temperature and ambient temperature ($T_{J(MAX)} - T_A$), package thermal resistance from the junction to the ambient environment (θ_{JA}), the rate of ambient airflow and PCB layout. $P_{D(MAX)}$ can be approximated by the following equation:

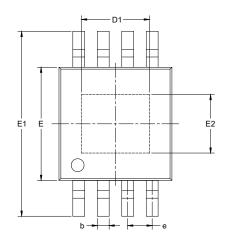
$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$
 (2)

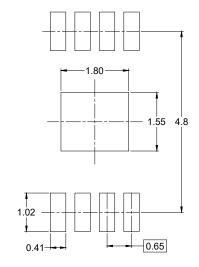
Layout Guidelines

To get good PSRR, low output noise and high transient response performance, the input and output bypass capacitors must be placed as close as possible to the IN pin and OUT pin separately.

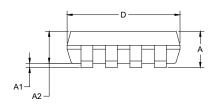
SGM2249xQ

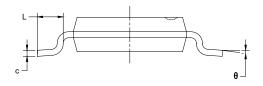
Automotive 40V, 300mA, Low Quiescent Current and Low Dropout Voltage Linear Regulator


REVISION HISTORY

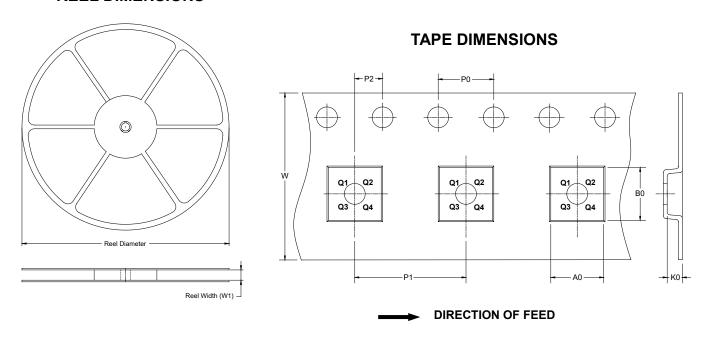

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JUNE 2025 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	5
Updated Typical Performance Characteristics section	10 to 12
Updated Application Information section	15
Changes from Original (MARCH 2025) to REV.A	Page
Changed from product preview to production data	All




PACKAGE OUTLINE DIMENSIONS MSOP-8 (Exposed Pad)

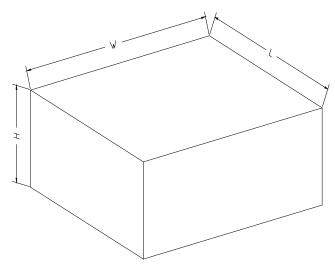
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
D1	1.700	1.900	0.067	0.075	
е	0.65	BSC	0.026	BSC	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
E2	1.450	1.650	0.057	0.065	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-8 (Exposed Pad)	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	