



# SGM260421

## High-Integration PMIC with 4 Bucks, 2 LDOs and Load Bypass Switches

### GENERAL DESCRIPTION

The SGM260421 is a highly-integrated multi-channel power management circuit. It supports a variety of microcontrollers and solid-state drive applications. It incorporates four Bucks and two LDOs that deliver several output voltages. Buck1 and two LDOs can be set as a load switch while Buck4 can be set as an LDO. The device has several default configurations which are programmed in the factory. Startup sequencing, turn-on delay, extra delay, turn-off delay, wake-up delay, voltage of each channel, soft-start time, SLEEP or DPSLP state, operating modes, and other settings can all be configured.

SGM260421 supplies 8 configurable GPIOs for system hardware control requirements. These GPIOs can be programmed for a variety of functions, including nIRQ, SYSMON, SYSWARN, EXT\_EN, I<sup>2</sup>C controlled output, PG of internal rail, SLEEP/PWREN, PWRDIS, EN of internal rail. Otherwise, GPIO2 - GPIO4 can support three-state status for configuring the default output voltage, regulators operation mode, and extra turn-on delay times.

The SGM260421 is available in Green WLCSP-2.69×2.69-36B, FOCSP-3.35×3.1-34B and TBGA-3.35×3.1-34B packages.

### APPLICATIONS

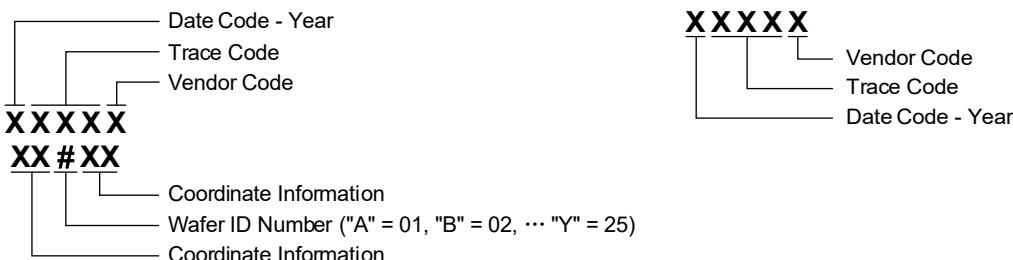
Solid-State Drives  
FPGA  
Microcontroller Applications  
Personal Navigation Devices

### FEATURES

- **Input Voltage Range: 2.7V to 5.5V**
- **Advanced PMIC:**
  - **Buck1: 1.7V to 2.9V, 20mV/Step, 4A, Configurable Bypass Function**
  - **Buck2: 0.5V to 1.33V, 10mV/Step, 3A**
  - **Buck3: 0.5V to 1.3V, 10mV/Step, 4A**
  - **Buck4: 0.8V to 2.0V, 10mV/Step, 2A, Configurable 400mA LDO**
  - **LDO1: 1V to 2.7V, 50mV/Step, 400mA, Configurable 400mA LSW**
  - **LDO2: 1V to 2.7V, 50mV/Step, 400mA, Configurable 400mA LSW**
  - **ACOT Control for Bucks**
- **Ultra-Low Quiescent Current**
- **Buck1 and LDO1, LDO2 Bypass Mode**
- **Flex Configurable**
  - **Output Voltage**
  - **Soft-Start Time**
  - **Startup Sequence**
  - **Switching Frequency**
  - **Current Limit**
  - **Status Reporting and Controllability via I<sup>2</sup>C**
  - **8 Programmable GPIOs**
  - **Seamless Sequencing of External Supplies**
  - **Multiple SLEEP Modes**
- **I<sup>2</sup>C Interface up to 3.4MHz**
- **Input OV/UV Protection**
- **Output OV/UV Protection**
- **Thermal Shutdown Protection**

## PACKAGE/ORDERING INFORMATION

| MODEL         | PACKAGE DESCRIPTION | SPECIFIED TEMPERATURE RANGE | ORDERING NUMBER          | PACKAGE MARKING              | PACKING OPTION      |
|---------------|---------------------|-----------------------------|--------------------------|------------------------------|---------------------|
| SGM260421-001 | TBGA-3.35x3.1-34B   | -40°C to +125°C             | SGM260421-001XTBAE34G/TR | SGM21R<br>TBAE34<br>XXXXX    | Tape and Reel, 5000 |
| SGM260421-002 | WLCSP-2.69x2.69-36B | -40°C to +125°C             | SGM260421-002XG/TR       | SGM<br>24E<br>XXXXX<br>XX#XX | Tape and Reel, 3000 |
| SGM260421-003 | FOCSP-3.35x3.1-34B  | -40°C to +125°C             | SGM260421-003XG34/TR     | 24K<br>XXXXX<br>XX#XX        | Tape and Reel, 5000 |
|               | TBGA-3.35x3.1-34B   | -40°C to +125°C             | SGM260421-003XTBAE34G/TR | SGM27Z<br>TBAE34<br>XXXXX    | Tape and Reel, 5000 |
| SGM260421-004 | TBGA-3.35x3.1-34B   | -40°C to +125°C             | SGM260421-004XTBAE34G/TR | SGM2C4<br>TBAE34<br>XXXXX    | Tape and Reel, 5000 |
| SGM260421-006 | TBGA-3.35x3.1-34B   | -40°C to +125°C             | SGM260421-006XTBAE34G/TR | SGM27U<br>TBAE34<br>XXXXX    | Tape and Reel, 5000 |


Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

## MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number.

**FOCSP-3.35x3.1-34B/WLCSP-2.69x2.69-36B**

**TBGA-3.35x3.1-34B**



**ABSOLUTE MAXIMUM RATINGS**

|                                                    |       |                 |
|----------------------------------------------------|-------|-----------------|
| All I/O and Power pins except PGND12, PGND34, AGND | ..... | -0.3V to 6V     |
| Grounds: Any PGND referenced to AGND               | ..... | -0.3V to 0.3V   |
| SW_Bx to PGNDx                                     | ..... | -0.3V to 6V     |
| SW_Bx to PGNDx (1ns Transient)                     | ..... | -2V             |
| FB_Bx to AGND                                      | ..... | -0.3V to 6V     |
| LDOx to AGND                                       | ..... | -0.3V to 6V     |
| Package Thermal Resistance                         |       |                 |
| TBGA-3.35×3.1-34B, $\theta_{JA}$                   | ..... | 32.4°C/W        |
| TBGA-3.35×3.1-34B, $\theta_{JB}$                   | ..... | 5.5°C/W         |
| TBGA-3.35×3.1-34B, $\theta_{JC}$                   | ..... | 21.5°C/W        |
| WLCSP-2.69×2.69-36B, $\theta_{JA}$                 | ..... | 28.1°C/W        |
| WLCSP-2.69×2.69-36B, $\theta_{JB}$                 | ..... | 4.5°C/W         |
| WLCSP-2.69×2.69-36B, $\theta_{JC}$                 | ..... | 9.6°C/W         |
| FOCSP-3.35×3.1-34B, $\theta_{JA}$                  | ..... | 29.1°C/W        |
| FOCSP-3.35×3.1-34B, $\theta_{JB}$                  | ..... | 5.2°C/W         |
| FOCSP-3.35×3.1-34B, $\theta_{JC}$                  | ..... | 9.2°C/W         |
| Junction Temperature                               | ..... | +150°C          |
| Storage Temperature Range                          | ..... | -65°C to +150°C |
| Lead Temperature (Soldering, 10s)                  | ..... | +260°C          |
| ESD Susceptibility <sup>(1)(2)</sup>               |       |                 |
| HBM                                                | ..... | ±2000V          |
| CDM                                                | ..... | ±500V           |

## NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

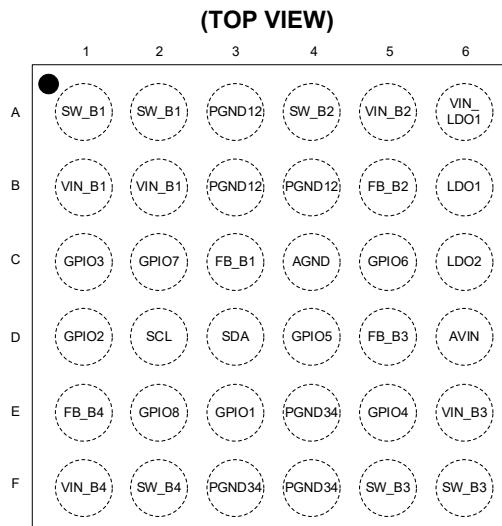
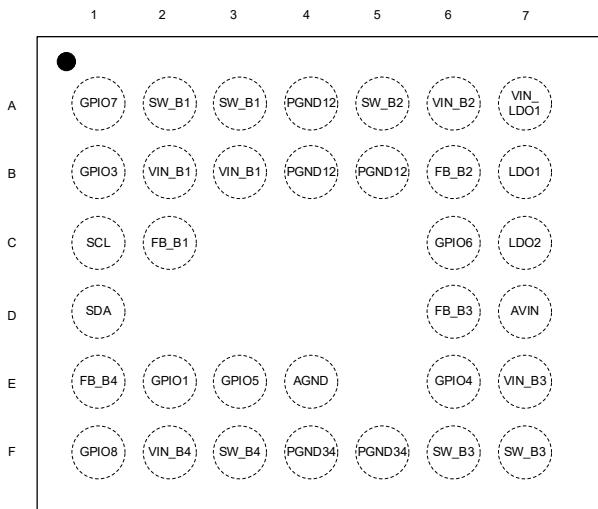
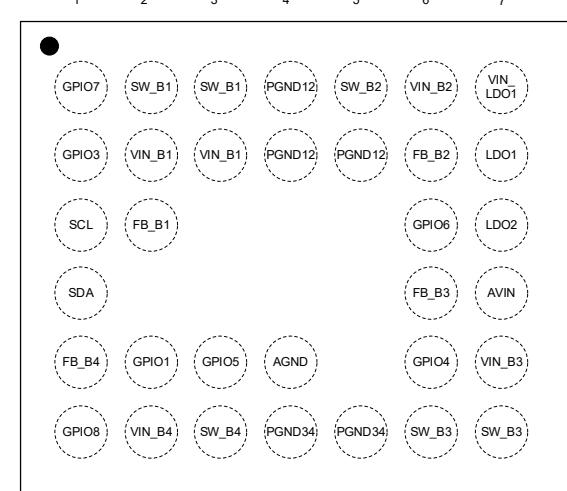
**RECOMMENDED OPERATING CONDITIONS**

|                                                     |       |               |
|-----------------------------------------------------|-------|---------------|
| AVIN, VIN_B1, VIN_B2, VIN_B3, VIN_B4 <sup>(1)</sup> | ..... | 2.7V to 5.5V  |
| VIN_LDO1                                            |       |               |
| LDO Mode                                            | ..... | 1.62V to 5.5V |
| LSW Mode                                            | ..... | 1.62V to AVIN |

Operating Junction Temperature Range ..... -40°C to +125°C

NOTE: 1. The maximum input voltage of the device must be AVIN at all times.

**OVERSTRESS CAUTION**




Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

**ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

**DISCLAIMER**

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

**PIN CONFIGURATIONS****(TOP VIEW)****FOCSP-3.35x3.1-34B****(TOP VIEW)****TBGA-3.35x3.1-34B**

## PIN DESCRIPTION

| PIN        |            | NAME     | FUNCTION                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |  |
|------------|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WLCSP      | FOCSP/TBGA |          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| A3, B3, B4 | A4, B4, B5 | PGND12   | Power Ground of Buck1 and Buck2.                                                                                                                                                                                                                                                         | The PGNDx pins are the dedicated power ground pins for the Buck converters, directly connecting to the low-side FETs of the Buck converters.                    |  |
| E4, F3, F4 | F4, F5     | PGND34   | Power Ground of Buck3 and Buck4.                                                                                                                                                                                                                                                         |                                                                                                                                                                 |  |
| C4         | E4         | AGND     | Analog Ground. AGND is the analog ground pin for the analog circuitry and LDOs. It must be tied to the PGNDx pins, and this connection should not carry high currents.                                                                                                                   |                                                                                                                                                                 |  |
| A1, A2     | A2, A3     | SW_B1    | Switch Pin of Buck1.                                                                                                                                                                                                                                                                     | SW_Bx are the switch nodes of the Buck converters, directly connected to the corresponding Buck inductor on the top PCB layer.                                  |  |
| A4         | A5         | SW_B2    | Switch Pin of Buck2.                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |  |
| F5, F6     | F6, F7     | SW_B3    | Switch Pin of Buck3.                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |  |
| F2         | F3         | SW_B4    | Switch Pin of Buck4.                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |  |
| B1, B2     | B2, B3     | VIN_B1   | VIN Power Input of Buck1.                                                                                                                                                                                                                                                                | Each Buck converter requires its VIN_Bx pin to be bypassed directly to the corresponding PGNDx pin on the top PCB layer using a high-quality ceramic capacitor. |  |
| A5         | A6         | VIN_B2   | VIN Power Input of Buck2.                                                                                                                                                                                                                                                                |                                                                                                                                                                 |  |
| E6         | E7         | VIN_B3   | VIN Power Input of Buck3.                                                                                                                                                                                                                                                                |                                                                                                                                                                 |  |
| F1         | F2         | VIN_B4   | VIN Power Input of Buck4.                                                                                                                                                                                                                                                                |                                                                                                                                                                 |  |
| C3         | C2         | FB_B1    | Feedback of Buck1.                                                                                                                                                                                                                                                                       | These are the feedback pins of the Buck regulators, which should be Kelvin-connected to the corresponding Buck output capacitors.                               |  |
| B5         | B6         | FB_B2    | Feedback of Buck2.                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |  |
| D5         | D6         | FB_B3    | Feedback of Buck3.                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |  |
| E1         | E1         | FB_B4    | Feedback of Buck4.                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |  |
| A6         | A7         | VIN_LDO1 | VIN Power Input of LDO1. The dedicated input power pin for LDO1 is designated as VIN_LDO1. This pin must be bypassed directly to AGND on the top PCB layer using a 1μF ceramic capacitor.                                                                                                |                                                                                                                                                                 |  |
| B6         | B7         | LDO1     | Output of LDO1.                                                                                                                                                                                                                                                                          | These are the LDO output pins. Each LDO output pin must be bypassed directly to AGND using a 1μF ceramic capacitor.                                             |  |
| C6         | C7         | LDO2     | Output of LDO2.                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| D6         | D7         | AVIN     | Analog Input Supply and Power Input of LDO2. This pin also monitors the VIN for over-voltage or under-voltage. AVIN is the input power pin for LDO2 and supplies power to the analog circuitry. It must be bypassed directly to AGND on the top PCB layer using a 1μF ceramic capacitor. |                                                                                                                                                                 |  |
| D2         | C1         | SCL      | I <sup>2</sup> C Clock Input.                                                                                                                                                                                                                                                            | Standard I <sup>2</sup> C interface pins for digital communication.                                                                                             |  |
| D3         | D1         | SDA      | I <sup>2</sup> C Data Input and Output.                                                                                                                                                                                                                                                  |                                                                                                                                                                 |  |
| E3         | E2         | GPIO1    | Configurable General Purpose I/O (Open-Drain or Push-Pull).                                                                                                                                                                                                                              |                                                                                                                                                                 |  |
| D1         | -          | GPIO2    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| C1         | B1         | GPIO3    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| E5         | E6         | GPIO4    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| D4         | E3         | GPIO5    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| C5         | C6         | GPIO6    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| C2         | A1         | GPIO7    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |
| E2         | F1         | GPIO8    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |

SGM260421

## ELECTRICAL CHARACTERISTICS

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                                                 | SYMBOL                    | CONDITIONS                                                             | MIN         | TYP  | MAX  | UNITS |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------|-------------|------|------|-------|
| <b>Digital I/O</b>                                                                                                        |                           |                                                                        |             |      |      |       |
| GPIOs Leakage Current                                                                                                     | I <sub>LKG_GPIO</sub>     | Input = 5V                                                             |             |      | 1    | µA    |
| GPIOs Output Low (Open-Drain)                                                                                             | V <sub>OL</sub>           | I <sub>OL</sub> = 1mA                                                  |             |      | 0.35 | V     |
| GPIOs Output High (Push-Pull)                                                                                             | V <sub>OH</sub>           | I <sub>OH</sub> = 1mA                                                  | AVIN - 0.35 |      |      | V     |
| GPIOs Input Low (GPIO5/6/7/8)                                                                                             | V <sub>5-8_IO_LOW</sub>   |                                                                        |             |      | 0.55 | V     |
| GPIOs Input High (GPIO5/6/7/8)                                                                                            | V <sub>5-8_IO_HIGH</sub>  |                                                                        | 1.25        |      |      | V     |
| GPIOs Input Low (GPIO1/2/3/4)                                                                                             | V <sub>1-4_IO_LOW</sub>   |                                                                        |             |      | 0.55 | V     |
| GPIOs Input Hi-Z (GPIO1/2/3/4)                                                                                            | V <sub>1-4_IO_FLOAT</sub> |                                                                        |             | 0.85 |      | V     |
| GPIOs Input High (GPIO1/2/3/4)                                                                                            | V <sub>1-4_IO_HIGH</sub>  |                                                                        | 1.25        |      |      | V     |
| GPIOs Deglitch Time <sup>(1)</sup>                                                                                        | t <sub>IO_DEG</sub>       |                                                                        |             | 5    |      | µs    |
| <b>PWRSYSTEM Control</b>                                                                                                  |                           |                                                                        |             |      |      |       |
| Supply Voltage Range                                                                                                      | V <sub>IN_Bx</sub>        | VIN_B1/VIN_B2 referenced to PGND12, VIN_B3/VIN_B4 referenced to PGND34 | 2.7         |      | 5.5  | V     |
| VIN_LDO1 Referenced to AGND                                                                                               | V <sub>IN_L1</sub>        | LDO Mode                                                               | 1.62        |      | 5.5  | V     |
|                                                                                                                           | V <sub>IN_L1_LSW</sub>    | LSW Mode                                                               | 1.62        |      | AVIN |       |
| AVIN UVLO Threshold Falling                                                                                               | V <sub>AVIN_UV_F</sub>    | VIN_LVL = 0                                                            | 2.4         | 2.5  | 2.6  | V     |
|                                                                                                                           |                           | VIN_LVL = 1                                                            | 3.4         | 3.5  | 3.6  |       |
| AVIN UVLO Hysteresis                                                                                                      | V <sub>AVIN_UV_HYS</sub>  | VIN_LVL = 0                                                            |             | 100  |      | mV    |
|                                                                                                                           |                           | VIN_LVL = 1                                                            |             | 300  |      |       |
| AVIN Deglitch Time UV <sup>(1)</sup>                                                                                      | t <sub>AVIN_DEG_UV</sub>  | Falling, enter UV                                                      |             | 10   |      | µs    |
|                                                                                                                           |                           | Rising, exit UV                                                        |             | 50   |      |       |
| AVIN OV Threshold Rising                                                                                                  | V <sub>AVIN_OV_R</sub>    | VIN_OV_SET = 0                                                         | 3.8         | 3.9  | 4.0  | V     |
|                                                                                                                           |                           | VIN_OV_SET = 1                                                         | 5.6         | 5.7  | 5.8  |       |
| AVIN OV Hysteresis                                                                                                        | V <sub>AVIN_OV_HYS</sub>  |                                                                        | 150         | 200  | 250  | mV    |
| AVIN Deglitch Time OV <sup>(1)</sup>                                                                                      | t <sub>AVIN_DEG_OV</sub>  | Rising, enter OV                                                       |             | 10   |      | µs    |
|                                                                                                                           |                           | Falling, exit OV                                                       |             | 35   |      |       |
| AVIN POK_OV Interrupt Threshold Rising<br>(Accuracy is only valid for register default setting, VIN_POK_OV_SET[1:0] = 01) | V <sub>AVIN_POK_R</sub>   | VIN_POK_OV_SET[1:0] = 00                                               | 3.4         | 3.5  | 3.6  | V     |
|                                                                                                                           |                           | VIN_POK_OV_SET[1:0] = 01                                               | 3.6         | 3.7  | 3.8  |       |
|                                                                                                                           |                           | VIN_POK_OV_SET[1:0] = 10                                               | 5.17        | 5.3  | 5.43 |       |
|                                                                                                                           |                           | VIN_POK_OV_SET[1:0] = 11                                               | 5.35        | 5.5  | 5.65 |       |
| AVIN POK_OV Interrupt Threshold Hysteresis                                                                                | V <sub>AVIN_POK_HYS</sub> |                                                                        | 100         | 200  | 300  | mV    |
| AVIN POK Deglitch Time <sup>(1)</sup>                                                                                     | t <sub>AVIN_DEG_POK</sub> |                                                                        |             | 5    |      | µs    |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

SGM260421

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                             | SYMBOL                     | CONDITIONS                                                                                                                                             | MIN   | TYP                  | MAX  | UNITS |
|-----------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|------|-------|
| <b>PWRSYSTEM Control</b>                                              |                            |                                                                                                                                                        |       |                      |      |       |
| Operating Supply Current                                              | I <sub>SD</sub>            | All regulators disabled, I <sup>2</sup> C is always available                                                                                          |       | 9                    |      | µA    |
|                                                                       | I <sub>Q</sub>             | All regulators enabled, no load (normal mode)                                                                                                          |       | 140                  |      |       |
|                                                                       |                            | All regulators enabled, no load (low-power mode)                                                                                                       |       | 115                  |      |       |
| System Monitor (SYSMON) Programmable Range - Rising Threshold         | V <sub>SYSMON_R</sub>      | In 25mV steps                                                                                                                                          | 2.725 |                      | 3.1  | V     |
| AVIN System Monitor (SYSMON) Accuracy                                 | V <sub>SYSMON_R_ACC</sub>  |                                                                                                                                                        | -2.5  | Set Point            | 2.5  | %     |
| AVIN System Monitor (SYSMON) Hysteresis                               | V <sub>SYSMON_HYS</sub>    |                                                                                                                                                        |       | 50                   |      | mV    |
| AVIN System Warning (SYSWARN) Programmable Range - Rising Threshold   | V <sub>SYSWARN_R</sub>     | In 25mV steps                                                                                                                                          | 2.775 |                      | 3.15 | V     |
| AVIN System Warning (SYSWARN) Accuracy                                | V <sub>SYSWARN_R_ACC</sub> | In 25mV steps                                                                                                                                          | -2.5  | Set Point            | 2.5  | %     |
| AVIN System Monitor (SYSWARN) Hysteresis                              | V <sub>SYSWARN_HYS</sub>   |                                                                                                                                                        |       | 50                   |      | mV    |
| Thermal Shutdown Temperature <sup>(1)</sup>                           | T <sub>SD</sub>            | Temperature rising                                                                                                                                     |       | 155                  |      | °C    |
| Thermal Shutdown Hysteresis <sup>(1)</sup>                            | T <sub>HYS</sub>           |                                                                                                                                                        |       | 30                   |      | °C    |
| Thermal Interrupt Threshold <sup>(1)</sup>                            | T <sub>WARN</sub>          | Temperature rising, referenced to T <sub>SD</sub>                                                                                                      |       | T <sub>SD</sub> - 30 |      | °C    |
| Thermal Interrupt Hysteresis <sup>(1)</sup>                           | T <sub>WARN_HYS</sub>      |                                                                                                                                                        |       | 20                   |      | °C    |
| Startup Delay after Initial AVIN                                      | t <sub>SYS_ON</sub>        |                                                                                                                                                        |       | 1000                 | 1500 | µs    |
| Transition Time from SLEEP/DPSLP State to Active State <sup>(1)</sup> | t <sub>TRANS_GPIO</sub>    | Time from SLEEP/PWREN pin low-to-high transition to time when the first regulator turns on (start to ramp up) with minimum turn-on delay configuration |       | 25                   |      | µs    |
|                                                                       | t <sub>TRANS_I2C</sub>     | Time from I <sup>2</sup> C command to time when the first regulator turns on (start to ramp up) with minimum turn-on delay configuration               |       | 25                   |      | µs    |
| Time to First Power Rail Turn-Off <sup>(1)</sup>                      | t <sub>OFF</sub>           | Time from turn-off command to when the first power rail turns off with minimum turn-off delay configuration                                            |       | 10                   |      | µs    |
| Output OV/UV Retry Time <sup>(1)</sup>                                | t <sub>HICCUP_OFF</sub>    | System retry time in OVUVFLT state                                                                                                                     |       | 200                  |      | ms    |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                                     | SYMBOL                      | CONDITIONS                                             | MIN  | TYP              | MAX  | UNITS             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|------|------------------|------|-------------------|
| <b>Buck1</b>                                                                                                  |                             |                                                        |      |                  |      |                   |
| Operating Voltage Range                                                                                       | V <sub>IN_B1</sub>          |                                                        | 2.7  |                  | 5.5  | V                 |
| Output Voltage Range                                                                                          | V <sub>OUT_B1</sub>         | Configurable in 20mV steps                             | 1.7  |                  | 2.9  | V                 |
| Maximum Output Current                                                                                        | I <sub>B1_MAX</sub>         |                                                        | 4    |                  |      | A                 |
| Supply Current, Standby                                                                                       | I <sub>VIN_B1</sub>         | Normal mode, regulator current only, non-switching     |      | 17               | 27   | µA                |
|                                                                                                               |                             | Low-power mode, regulator current only, non-switching  |      | 14               | 24   | µA                |
| Output Voltage Accuracy                                                                                       | V <sub>OUT_B1_ACC</sub>     | T <sub>J</sub> = +25°C                                 | -1   | V <sub>NOM</sub> | 1    | %                 |
|                                                                                                               |                             | T <sub>J</sub> = -40°C to +125°C                       | -1.5 | V <sub>NOM</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                                |                             | V <sub>IN_B1</sub> = 2.7V to 5.5V                      |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                                |                             | I <sub>O</sub> = 0A to max rating                      |      | 0.5              |      | %/A               |
| Power Good UV Threshold                                                                                       | V <sub>PG_B1_UV</sub>       | V <sub>OUT_B1</sub> rising, PG becomes high            | 89.5 | 93               | 96.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                                      | V <sub>PG_HYS_B1_UV</sub>   | V <sub>OUT_B1</sub> falling, PG becomes low            |      | 3.5              |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                                       | V <sub>PG_B1_OV</sub>       | V <sub>OUT_B1</sub> rising, PG becomes low             | 106  | 110              | 114  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                                      | V <sub>PG_HYS_B1_OV</sub>   | V <sub>OUT_B1</sub> falling, PG becomes high           |      | 3.5              |      | %V <sub>NOM</sub> |
| OV/UV Deglitch Time <sup>(1)</sup>                                                                            | t <sub>DEG_B1_OV/UV</sub>   | Time from B1 OV or UV to rails shutdown                |      | 150              |      | µs                |
| Switching Frequency                                                                                           | f <sub>SW_B1</sub>          | B1_FREQ_SET = 01                                       |      | 2                |      | MHz               |
| Switching Frequency Tolerance                                                                                 | f <sub>SW_B1_ACC</sub>      |                                                        | -10  |                  | 10   | %                 |
| Soft-Start Period                                                                                             | t <sub>SS_B1</sub>          | B1_SS[1:0] = 00, 10%-90% of V <sub>OUT</sub>           |      | 60               |      | µs                |
|                                                                                                               |                             | B1_SS[1:0] = 01, 10%-90% of V <sub>OUT</sub>           |      | 75               |      |                   |
|                                                                                                               |                             | B1_SS[1:0] = 10, 10%-90% of V <sub>OUT</sub>           |      | 115              |      |                   |
|                                                                                                               |                             | B1_SS[1:0] = 11, 10%-90% of V <sub>OUT</sub>           |      | 175              |      |                   |
| Internal Valley Current Limit<br>(Accuracy is only valid for register default setting, B1_ILIM_SET[1:0] = 10) | I <sub>LIM_B1</sub>         | B1_ILIM_SET[1:0] = 00, T <sub>J</sub> = +25°C          | 1.6  | 3                |      | A                 |
|                                                                                                               |                             | B1_ILIM_SET[1:0] = 01, T <sub>J</sub> = +25°C          | 3.0  | 4                |      |                   |
|                                                                                                               |                             | B1_ILIM_SET[1:0] = 10, T <sub>J</sub> = +25°C          | 4.3  | 5                |      |                   |
|                                                                                                               |                             | B1_ILIM_SET[1:0] = 11, T <sub>J</sub> = +25°C          | 5.3  | 6                |      |                   |
| PMOS On-Resistance                                                                                            | R <sub>DS_ON_P1</sub>       | V <sub>IN_B1</sub> = 3.3V                              |      | 43               |      | mΩ                |
| NMOS On-Resistance                                                                                            | R <sub>DS_ON_N1</sub>       | V <sub>IN_B1</sub> = 3.3V                              |      | 36               |      | mΩ                |
| Output Discharge Resistance <sup>(1)</sup>                                                                    | R <sub>DISCH_B1</sub>       | B1_DISCH_SET[1:0] = 00                                 |      | 5                |      | Ω                 |
|                                                                                                               |                             | B1_DISCH_SET[1:0] = 01                                 |      | 10               |      |                   |
|                                                                                                               |                             | B1_DISCH_SET[1:0] = 10                                 |      | 20               |      |                   |
|                                                                                                               |                             | B1_DISCH_SET[1:0] = 11                                 |      | 40               |      |                   |
| <b>Buck1 Bypass Mode</b>                                                                                      |                             |                                                        |      |                  |      |                   |
| Input Voltage Range for Bypass Mode                                                                           | V <sub>IN_B1_LSW</sub>      |                                                        | 2.7  | 3.3              | 3.7  | V                 |
| Internal PMOS Current Shutdown                                                                                | I <sub>LIM_B1_LSW</sub>     |                                                        |      | 5                |      | A                 |
| Hiccup Off-Time <sup>(1)</sup>                                                                                | t <sub>HICCUP_OFF_LSW</sub> |                                                        |      | 14               |      | ms                |
| Internal PMOS Soft-Start <sup>(1)</sup>                                                                       | t <sub>SS_B1_LSW</sub>      | V <sub>IN_B1_LSW</sub> = 3.3V, C <sub>OUT</sub> = 44µF |      | 190              |      | µs                |
| Over-Voltage Protection Threshold <sup>(1)</sup>                                                              | V <sub>OV_B1_LSW</sub>      |                                                        |      | 3.8              |      | V                 |
| OV Deglitch Time <sup>(1)</sup>                                                                               | t <sub>DEG_B1_LSW_OV</sub>  |                                                        |      | 20               |      | µs                |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

SGM260421

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                                     | SYMBOL                    | CONDITIONS                                            | MIN  | TYP              | MAX  | UNITS             |
|---------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|------|------------------|------|-------------------|
| <b>Buck2</b>                                                                                                  |                           |                                                       |      |                  |      |                   |
| Operating Voltage Range                                                                                       | V <sub>IN_B2</sub>        |                                                       | 2.7  |                  | 5.5  | V                 |
| Output Voltage Range                                                                                          | V <sub>OUT_B2</sub>       | Configurable in 10mV steps                            | 0.5  |                  | 1.33 | V                 |
| Maximum Output Current                                                                                        | I <sub>B2_MAX</sub>       |                                                       | 3    |                  |      | A                 |
| Supply Current, Standby                                                                                       | I <sub>VIN_B2</sub>       | Normal mode, regulator current only, non-switching    |      | 17               | 25   | µA                |
|                                                                                                               |                           | Low-power mode, regulator current only, non-switching |      | 14               | 20   | µA                |
| Output Voltage Accuracy                                                                                       | V <sub>OUT_B2_ACC</sub>   | T <sub>J</sub> = +25°C                                | -1   | V <sub>NOM</sub> | 1    | %                 |
|                                                                                                               |                           | T <sub>J</sub> = -40°C to +125°C                      | -1.5 | V <sub>NOM</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                                |                           | V <sub>IN_B2</sub> = 2.7V to 5.5V                     |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                                |                           | I <sub>O</sub> = 0A to max rating                     |      | 0.5              |      | %/A               |
| Power Good UV Threshold                                                                                       | V <sub>PG_B2_UV</sub>     | V <sub>OUT_B2</sub> rising, PG becomes high           | 89.5 | 93               | 96.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                                      | V <sub>PG_HYS_B2_UV</sub> | V <sub>OUT_B2</sub> falling, PG becomes low           |      | 3.5              |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                                       | V <sub>PG_B2_OV</sub>     | V <sub>OUT_B2</sub> rising, PG becomes low            | 106  | 110              | 114  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                                      | V <sub>PG_HYS_B2_OV</sub> | V <sub>OUT_B2</sub> falling, PG becomes high          |      | 3.5              |      | %V <sub>NOM</sub> |
| OV/UV Deglitch Time <sup>(1)</sup>                                                                            | t <sub>DEG_B2_OV/UV</sub> | Time from B2 OV or UV to rails shutdown               |      | 150              |      | µs                |
| Switching Frequency                                                                                           | f <sub>SW_B2</sub>        | B2_FREQ_SET[1:0] = 01                                 |      | 2                |      | MHz               |
| Switching Frequency Tolerance                                                                                 | f <sub>SW_B2_ACC</sub>    |                                                       | -10  |                  | 10   | %                 |
| Soft-Start Period                                                                                             | t <sub>SS_B2</sub>        | B2_SS[1:0] = 00, 10%-90% of V <sub>OUT</sub>          |      | 30               |      | µs                |
|                                                                                                               |                           | B2_SS[1:0] = 01, 10%-90% of V <sub>OUT</sub>          |      | 55               |      |                   |
|                                                                                                               |                           | B2_SS[1:0] = 10, 10%-90% of V <sub>OUT</sub>          |      | 115              |      |                   |
|                                                                                                               |                           | B2_SS[1:0] = 11, 10%-90% of V <sub>OUT</sub>          |      | 175              |      |                   |
| Internal Valley Current Limit<br>(Accuracy is only valid for register default setting, B2_ILIM_SET[1:0] = 01) | I <sub>LIM_B2</sub>       | B2_ILIM_SET[1:0] = 00, T <sub>J</sub> = +25°C         | 1.1  | 2                |      | A                 |
|                                                                                                               |                           | B2_ILIM_SET[1:0] = 01, T <sub>J</sub> = +25°C         | 2.3  | 3                |      |                   |
|                                                                                                               |                           | B2_ILIM_SET[1:0] = 10, T <sub>J</sub> = +25°C         | 3.0  | 4                |      |                   |
|                                                                                                               |                           | B2_ILIM_SET[1:0] = 11, T <sub>J</sub> = +25°C         | 3.8  | 5                |      |                   |
| PMOS On-Resistance                                                                                            | R <sub>DS_ON_P2</sub>     | V <sub>IN_B2</sub> = 3.3V                             |      | 70               |      | mΩ                |
| NMOS On-Resistance                                                                                            | R <sub>DS_ON_N2</sub>     | V <sub>IN_B2</sub> = 3.3V                             |      | 30               |      | mΩ                |
| Output Discharge Resistance <sup>(1)</sup>                                                                    | R <sub>DISCH_B2</sub>     | B2_DISCH_SET[1:0] = 00                                |      | 5                |      | Ω                 |
|                                                                                                               |                           | B2_DISCH_SET[1:0] = 01                                |      | 10               |      |                   |
|                                                                                                               |                           | B2_DISCH_SET[1:0] = 10                                |      | 20               |      |                   |
|                                                                                                               |                           | B2_DISCH_SET[1:0] = 11                                |      | 40               |      |                   |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                                     | SYMBOL                    | CONDITIONS                                            | MIN  | TYP              | MAX  | UNITS             |
|---------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|------|------------------|------|-------------------|
| <b>Buck3</b>                                                                                                  |                           |                                                       |      |                  |      |                   |
| Operating Voltage Range                                                                                       | V <sub>IN_B3</sub>        |                                                       | 2.7  |                  | 5.5  | V                 |
| Output Voltage Range                                                                                          | V <sub>OUT_B3</sub>       | Configurable in 10mV steps                            | 0.5  |                  | 1.3  | V                 |
| Maximum Output Current                                                                                        | I <sub>B3_MAX</sub>       |                                                       | 4    |                  |      | A                 |
| Supply Current, Standby                                                                                       | I <sub>VIN_B3</sub>       | Normal mode, regulator current only, non-switching    |      | 17               | 25   | µA                |
|                                                                                                               |                           | Low-power mode, regulator current only, non-switching |      | 14               | 20   | µA                |
| Output Voltage Accuracy                                                                                       | V <sub>OUT_B3_ACC</sub>   | T <sub>J</sub> = +25°C                                | -1   | V <sub>NOM</sub> | 1    | %                 |
|                                                                                                               |                           | T <sub>J</sub> = -40°C to +125°C                      | -1.5 | V <sub>NOM</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                                |                           | V <sub>IN_B3</sub> = 2.7V to 5.5V                     |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                                |                           | I <sub>O</sub> = 0A to max rating                     |      | 0.5              |      | %/A               |
| Power Good UV Threshold                                                                                       | V <sub>PG_B3_UV</sub>     | V <sub>OUT_B3</sub> rising, PG becomes high           | 89.5 | 93               | 96.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                                      | V <sub>PG_HYS_B3_UV</sub> | V <sub>OUT_B3</sub> falling, PG becomes low           |      | 3.5              |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                                       | V <sub>PG_B3_OV</sub>     | V <sub>OUT_B3</sub> rising, PG becomes low            | 106  | 110              | 114  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                                      | V <sub>PG_HYS_B3_OV</sub> | V <sub>OUT_B3</sub> falling, PG becomes high          |      | 3.5              |      | %V <sub>NOM</sub> |
| OV/UV Deglitch Time <sup>(1)</sup>                                                                            | t <sub>DEG_B3_OV/UV</sub> | Time from B3 OV or UV to rails shutdown               |      | 150              |      | µs                |
| Switching Frequency                                                                                           | f <sub>SW_B3</sub>        | B3_FREQ_SET[1:0] = 01                                 |      | 2                |      | MHz               |
| Switching Frequency Tolerance                                                                                 | f <sub>SW_B3_ACC</sub>    |                                                       | -10  |                  | 10   | %                 |
| Soft-Start Period                                                                                             | t <sub>SS_B3</sub>        | B3_SS[1:0] = 00, 10%-90% of V <sub>OUT</sub>          |      | 30               |      | µs                |
|                                                                                                               |                           | B3_SS[1:0] = 01, 10%-90% of V <sub>OUT</sub>          |      | 55               |      |                   |
|                                                                                                               |                           | B3_SS[1:0] = 10, 10%-90% of V <sub>OUT</sub>          |      | 115              |      |                   |
|                                                                                                               |                           | B3_SS[1:0] = 11, 10%-90% of V <sub>OUT</sub>          |      | 175              |      |                   |
| Internal Valley Current Limit<br>(Accuracy is only valid for register default setting, B3_ILIM_SET[1:0] = 01) | I <sub>LIM_B3</sub>       | B3_ILIM_SET[1:0] = 00, T <sub>J</sub> = +25°C         | 3.3  | 4                |      | A                 |
|                                                                                                               |                           | B3_ILIM_SET[1:0] = 01, T <sub>J</sub> = +25°C         | 4.3  | 5                |      |                   |
|                                                                                                               |                           | B3_ILIM_SET[1:0] = 10, T <sub>J</sub> = +25°C         | 5.3  | 6                |      |                   |
|                                                                                                               |                           | B3_ILIM_SET[1:0] = 11, T <sub>J</sub> = +25°C         | 5.8  | 7                |      |                   |
| PMOS On-Resistance                                                                                            | R <sub>DS_ON_P3</sub>     | V <sub>IN_B3</sub> = 3.3V                             |      | 56               |      | mΩ                |
| NMOS On-Resistance                                                                                            | R <sub>DS_ON_N3</sub>     | V <sub>IN_B3</sub> = 3.3V                             |      | 24               |      | mΩ                |
| Output Discharge Resistance <sup>(1)</sup>                                                                    | R <sub>DISCH_B3</sub>     | B3_DISCH_SET[1:0] = 00                                |      | 5                |      | Ω                 |
|                                                                                                               |                           | B3_DISCH_SET[1:0] = 01                                |      | 10               |      |                   |
|                                                                                                               |                           | B3_DISCH_SET[1:0] = 10                                |      | 20               |      |                   |
|                                                                                                               |                           | B3_DISCH_SET[1:0] = 11                                |      | 40               |      |                   |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                                     | SYMBOL                    | CONDITIONS                                            | MIN  | TYP              | MAX  | UNITS             |
|---------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|------|------------------|------|-------------------|
| <b>Buck4</b>                                                                                                  |                           |                                                       |      |                  |      |                   |
| Operating Voltage Range                                                                                       | V <sub>IN_B4</sub>        |                                                       | 2.7  |                  | 5.5  | V                 |
| Output Voltage Range                                                                                          | V <sub>OUT_B4</sub>       | Configurable in 10mV steps                            | 0.8  |                  | 2.0  | V                 |
| Maximum Output Current                                                                                        | I <sub>B4_MAX</sub>       |                                                       | 2    |                  |      | A                 |
| Supply Current, Standby                                                                                       | I <sub>VIN_B4</sub>       | Normal mode, regulator current only, non-switching    |      | 17               | 25   | μA                |
|                                                                                                               |                           | Low-power mode, regulator current only, non-switching |      | 14               | 20   |                   |
| Output Voltage Accuracy                                                                                       | V <sub>OUT_B4_ACC</sub>   | T <sub>J</sub> = +25°C                                | -1   | V <sub>NOM</sub> | 1    | %                 |
|                                                                                                               |                           | T <sub>J</sub> = -40°C to +125°C                      | -1.5 | V <sub>NOM</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                                |                           | V <sub>IN_B4</sub> = 2.7V to 5.5V                     |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                                |                           | I <sub>O</sub> = 0A to max rating                     |      | 0.5              |      | %/A               |
| Power Good UV Threshold                                                                                       | V <sub>PG_B4_UV</sub>     | V <sub>OUT_B4</sub> rising, PG becomes high           | 89.5 | 93               | 93.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                                      | V <sub>PG_HYS_B4_UV</sub> | V <sub>OUT_B4</sub> falling, PG becomes low           |      | 3.5              |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                                       | V <sub>PG_B4_OV</sub>     | V <sub>OUT_B4</sub> rising, PG becomes low            | 106  | 110              | 114  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                                      | V <sub>PG_HYS_B4_OV</sub> | V <sub>OUT_B4</sub> falling, PG becomes high          |      | 3.5              |      | %V <sub>NOM</sub> |
| OV/UV Deglitch Time <sup>(1)</sup>                                                                            | t <sub>DEG_B4_OV/UV</sub> | Time from B4 OV or UV to rails shutdown               |      | 150              |      | μs                |
| Switching Frequency                                                                                           | f <sub>SW_B4</sub>        | B4_FREQ_SET[1:0] = 01                                 |      | 2                |      | MHz               |
| Switching Frequency Tolerance                                                                                 | f <sub>SW_B4_ACC</sub>    |                                                       | -10  |                  | 10   | %                 |
| Soft-Start Period                                                                                             | t <sub>SS_B4</sub>        | B4_SS[1:0] = 00, 10%-90% of V <sub>OUT</sub>          |      | 30               |      | μs                |
|                                                                                                               |                           | B4_SS[1:0] = 01, 10%-90% of V <sub>OUT</sub>          |      | 55               |      |                   |
|                                                                                                               |                           | B4_SS[1:0] = 10, 10%-90% of V <sub>OUT</sub>          |      | 115              |      |                   |
|                                                                                                               |                           | B4_SS[1:0] = 11, 10%-90% of V <sub>OUT</sub>          |      | 175              |      |                   |
| Internal Valley Current Limit<br>(Accuracy is only valid for register default setting, B4_ILIM_SET[1:0] = 01) | I <sub>LIM_B4</sub>       | B4_ILIM_SET[1:0] = 00, T <sub>J</sub> = +25°C         | 1.0  | 2                |      | A                 |
|                                                                                                               |                           | B4_ILIM_SET[1:0] = 01, T <sub>J</sub> = +25°C         | 2.3  | 3                |      |                   |
|                                                                                                               |                           | B4_ILIM_SET[1:0] = 10, T <sub>J</sub> = +25°C         | 3.2  | 4                |      |                   |
|                                                                                                               |                           | B4_ILIM_SET[1:0] = 11, T <sub>J</sub> = +25°C         | 4.2  | 5                |      |                   |
| PMOS On-Resistance                                                                                            | R <sub>DS_ON_P4</sub>     | V <sub>IN_B4</sub> = 3.3V                             |      | 74               |      | mΩ                |
| NMOS On-Resistance                                                                                            | R <sub>DS_ON_N4</sub>     | V <sub>IN_B4</sub> = 3.3V                             |      | 40               |      | mΩ                |
| Output Discharge Resistance <sup>(1)</sup>                                                                    | R <sub>DISCH_B4</sub>     | B4_DISCH_SET[1:0] = 00                                |      | 5                |      | Ω                 |
|                                                                                                               |                           | B4_DISCH_SET[1:0] = 01                                |      | 10               |      |                   |
|                                                                                                               |                           | B4_DISCH_SET[1:0] = 10                                |      | 20               |      |                   |
|                                                                                                               |                           | B4_DISCH_SET[1:0] = 11                                |      | 40               |      |                   |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                          | SYMBOL                        | CONDITIONS                                                                                | MIN  | TYP              | MAX  | UNITS             |
|----------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|------|------------------|------|-------------------|
| <b>Buck4 LDO Mode</b>                                                                              |                               |                                                                                           |      |                  |      |                   |
| Operating Voltage Range                                                                            | V <sub>IN_B4_LDO</sub>        |                                                                                           | 2.7  |                  | 5.5  | V                 |
| Output Voltage Range                                                                               | V <sub>OUT_B4_LDO</sub>       | Configurable in 10mV steps                                                                | 0.8  |                  | 2.0  | V                 |
| Output Current                                                                                     | I <sub>B4_LDO_MAX</sub>       | V <sub>IN_B4</sub> = 2.7V to 5.5V,<br>B4_LDO_ILIM_SET = 1                                 | 0.4  |                  |      | A                 |
| Output Voltage Accuracy                                                                            | V <sub>OUT_B4_LDO_ACC</sub>   | V <sub>IN_B4_LDO</sub> - V <sub>OUT_B4_LDO</sub> > 0.4V, T <sub>J</sub> = +25°C           | -1   | V <sub>SET</sub> | 1    | %                 |
| Output Voltage Accuracy                                                                            | V <sub>OUT_B4_LDO_ACC</sub>   | V <sub>IN_B4_LDO</sub> - V <sub>OUT_B4_LDO</sub> > 0.4V, T <sub>J</sub> = -40°C to +125°C | -1.5 | V <sub>SET</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                     |                               | V <sub>IN_B4</sub> = 2.7V to 5.5V, I <sub>B4_LDO_OUT</sub> = 1mA                          |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                     |                               | I <sub>B4_LDO_OUT</sub> = 1mA to 400mA,<br>B4_LDO_ILIM_SET = 1,                           |      | 0.5              |      | %/A               |
| Supply Current                                                                                     | I <sub>VIN_B4_LDO</sub>       | Regulator enabled no load, normal power mode                                              |      | 20               | 28   | µA                |
|                                                                                                    |                               | Regulator enabled no load, low-power mode                                                 |      | 7                | 15   | µA                |
| Soft-Start Period                                                                                  | t <sub>SS_B4_LDO</sub>        | B4_SS_LDO = 0, 10%-90% of V <sub>OUT</sub>                                                |      | 55               |      | µs                |
|                                                                                                    |                               | B4_SS_LDO = 1, 10%-90% of V <sub>OUT</sub>                                                |      | 100              |      |                   |
| Power Good UV Threshold                                                                            | V <sub>PG_B4_LDO_UV</sub>     | V <sub>OUT_B4_LDO</sub> rising, PG becomes high                                           | 81.5 | 85               | 88.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                           | V <sub>PG_HYS_B4_LDO_UV</sub> | V <sub>OUT_B4_LDO</sub> falling, PG becomes low                                           |      | 3                |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                            | V <sub>PG_B4_LDO_OV</sub>     | V <sub>OUT_B4_LDO</sub> rising, PG becomes low                                            | 111  | 115              | 119  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                           | V <sub>PG_HYS_B4_LDO_OV</sub> | V <sub>OUT_B4_LDO</sub> falling, PG becomes high                                          |      | 8                |      | %V <sub>NOM</sub> |
| Discharge Resistance <sup>(1)</sup>                                                                | R <sub>DISCH_B4_LDO</sub>     | Enabled when regulator disabled                                                           |      | 4.4              |      | Ω                 |
| Output Current Limit<br>(Accuracy is only valid for register default setting, B4_LDO_ILIM_SET = 0) | I <sub>LIM_B4_LDO</sub>       | B4_LDO_ILIM_SET = 0, T <sub>J</sub> = +25°C                                               | 300  | 400              |      | mA                |
|                                                                                                    |                               | B4_LDO_ILIM_SET = 1, T <sub>J</sub> = +25°C                                               | 400  | 500              |      |                   |

NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                                                                      | SYMBOL                     | CONDITIONS                                                                                                    | MIN  | TYP              | MAX  | UNITS             |
|------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------|------|------------------|------|-------------------|
| <b>LDO1</b>                                                                                    |                            |                                                                                                               |      |                  |      |                   |
| Operating Voltage Range                                                                        | V <sub>IN_L1</sub>         |                                                                                                               | 1.62 |                  | 5.5  | V                 |
| Output Voltage Range                                                                           | V <sub>OUT_L1</sub>        | Configurable in 50mV steps                                                                                    | 1    |                  | 2.7  | V                 |
| Output Current                                                                                 | I <sub>OUT_L1</sub>        | V <sub>IN_L1</sub> = 1.62V <sup>(2)</sup> to 5.5V, L1_ILIM_SET = 1                                            | 0.4  |                  |      | A                 |
| Output Voltage Accuracy                                                                        | V <sub>OUT_L1_ACC</sub>    | V <sub>IN_L1</sub> - V <sub>OUT_L1</sub> > 0.4V                                                               | -1   | V <sub>NOM</sub> | 1    | %                 |
|                                                                                                |                            | T <sub>J</sub> = +25°C                                                                                        | -1.5 | V <sub>NOM</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                 |                            | V <sub>IN_L1</sub> - V <sub>OUT_L1</sub> > 0.4V, V <sub>IN_L1</sub> = 2.7V to 5.5V, I <sub>OUT_L1</sub> = 1mA |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                 |                            | I <sub>OUT_L1</sub> = 1mA to 400mA, V <sub>IN_L1</sub> - V <sub>OUT_L1</sub> > 0.4V                           |      | 0.5              |      | %/A               |
| Supply Current                                                                                 | I <sub>VIN_L1</sub>        | Regulator enabled no load, normal power mode                                                                  |      | 20               | 28   | µA                |
|                                                                                                |                            | Regulator enabled no load, low-power mode                                                                     |      | 7                | 15   | µA                |
| Soft-Start Period                                                                              | t <sub>SS_L1</sub>         | L1_SS = 0, 10%-90% of V <sub>OUT</sub>                                                                        | 55   |                  |      | µs                |
|                                                                                                |                            | L1_SS = 1, 10%-90% of V <sub>OUT</sub>                                                                        | 100  |                  |      |                   |
| Power Good UV Threshold                                                                        | V <sub>PG_L1_UV</sub>      | V <sub>OUT_L1</sub> rising, PG becomes high                                                                   | 81.5 | 85               | 88.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                       | V <sub>PG_HYS_L1_UV</sub>  | V <sub>OUT_L1</sub> falling, PG becomes low                                                                   |      | 3                |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                        | V <sub>PG_L1_OV</sub>      | V <sub>OUT_L1</sub> rising, PG becomes low                                                                    | 111  | 115              | 119  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                       | V <sub>PG_HYS_L1_OV</sub>  | V <sub>OUT_L1</sub> falling, PG becomes high                                                                  |      | 8                |      | %V <sub>NOM</sub> |
| Dropout Voltage                                                                                | V <sub>L1_DROP</sub>       | I <sub>OUT_L1</sub> = 200mA, V <sub>IN_L1</sub> > 2.7V, L1_ILIM_SET = 0                                       |      |                  | 200  | mV                |
|                                                                                                |                            | I <sub>OUT_L1</sub> = 400mA, V <sub>IN_L1</sub> > 2.7V, L1_ILIM_SET = 1                                       |      |                  | 300  | mV                |
| Output Discharge Resistance <sup>(1)</sup>                                                     | R <sub>DISCH_L1</sub>      | L1_DISCH_SET[1:0] = 00                                                                                        |      | 10               |      | Ω                 |
|                                                                                                |                            | L1_DISCH_SET[1:0] = 01                                                                                        |      | 20               |      |                   |
|                                                                                                |                            | L1_DISCH_SET[1:0] = 10                                                                                        |      | 40               |      |                   |
|                                                                                                |                            | L1_DISCH_SET[1:0] = 11                                                                                        |      | 80               |      |                   |
| Output Current Limit<br>(Accuracy is only valid for register default setting, L1_ILIM_SET = 1) | I <sub>LIM_L1</sub>        | V <sub>IN_L1</sub> - V <sub>OUT_L1</sub> > 0.4V, T <sub>J</sub> = +25°C                                       | 300  | 400              |      | mA                |
|                                                                                                |                            |                                                                                                               | 400  | 500              |      |                   |
| <b>LDO1 Load Switch</b>                                                                        |                            |                                                                                                               |      |                  |      |                   |
| Load Switch Operation Range                                                                    | V <sub>IN_L1_LSW</sub>     |                                                                                                               | 1.62 |                  | AVIN | V                 |
| Load Switch On-Resistance <sup>(1)</sup>                                                       | R <sub>DS_ON_L1_LSW</sub>  |                                                                                                               |      | 200              |      | mΩ                |
| Load Switch Supply Current                                                                     | I <sub>VIN_L1_LSW</sub>    | LSW mode, no load                                                                                             |      | 18               | 28   | µA                |
| Soft-Start Period <sup>(1)</sup>                                                               | t <sub>SS_L1_LSW</sub>     | V <sub>IN_L1</sub> = 3.3V, C <sub>OUT</sub> = 1µF                                                             |      | 190              |      | µs                |
| Output Current Limit<br>(Accuracy is only valid for register default setting, L1_ILIM_SET = 1) | I <sub>LIM_L1_LSW</sub>    | L1_ILIM_SET = 0, T <sub>J</sub> = +25°C                                                                       | 300  | 400              |      | mA                |
|                                                                                                |                            | L1_ILIM_SET = 1, T <sub>J</sub> = +25°C                                                                       | 400  | 500              |      |                   |
| Over-Voltage Protection Threshold <sup>(1)</sup>                                               | V <sub>OV_L1_LSW</sub>     |                                                                                                               |      | 3.8              |      | V                 |
| OV Deglitch Time <sup>(1)</sup>                                                                | t <sub>DEG_L1_LSW_OV</sub> |                                                                                                               |      | 20               |      | µs                |

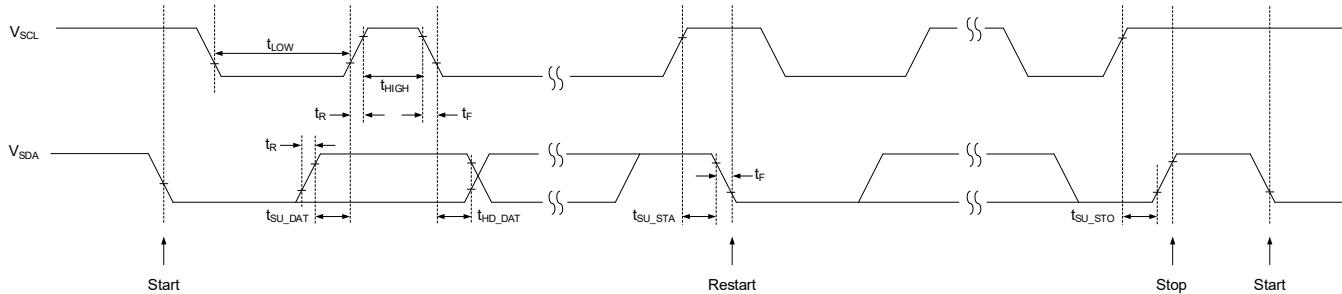
## NOTES:

1. Guaranteed by design and laboratory test, not tested in production.
2. LDO1 does not have the ability to output with full load at V<sub>IN\_L1</sub> = 1.62V.

SGM260421

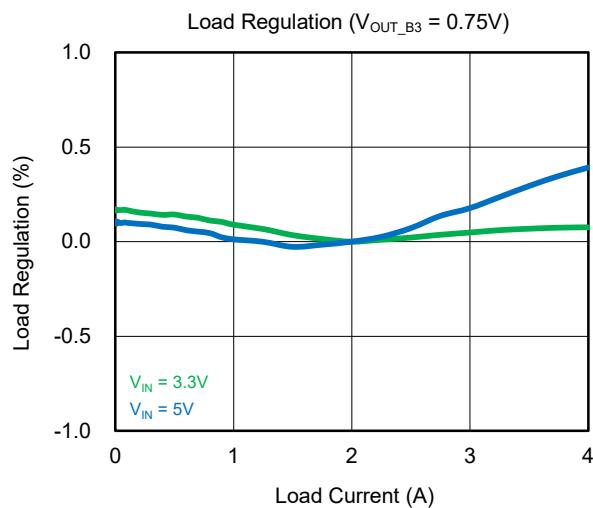
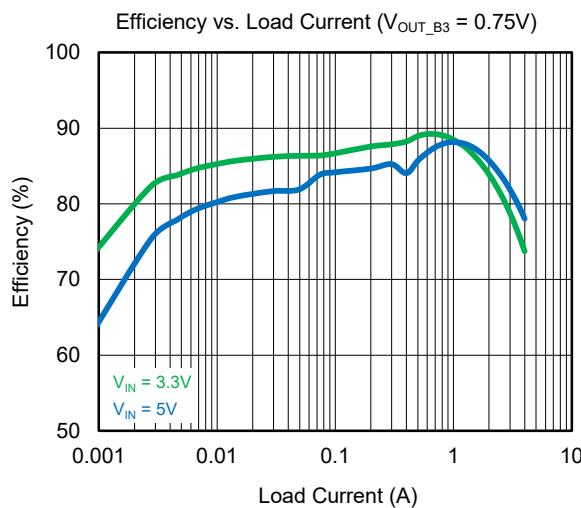
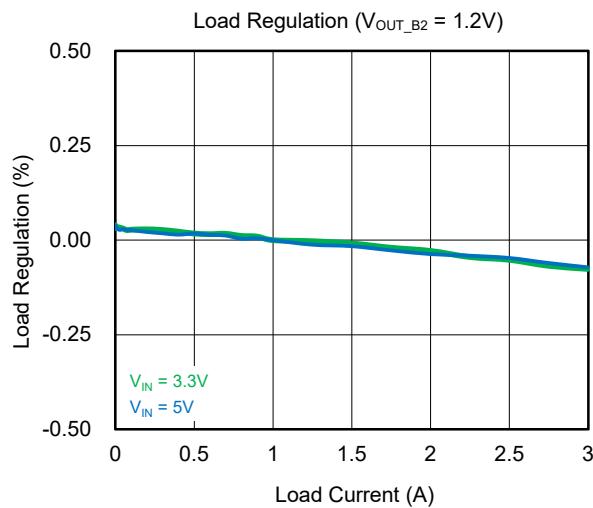
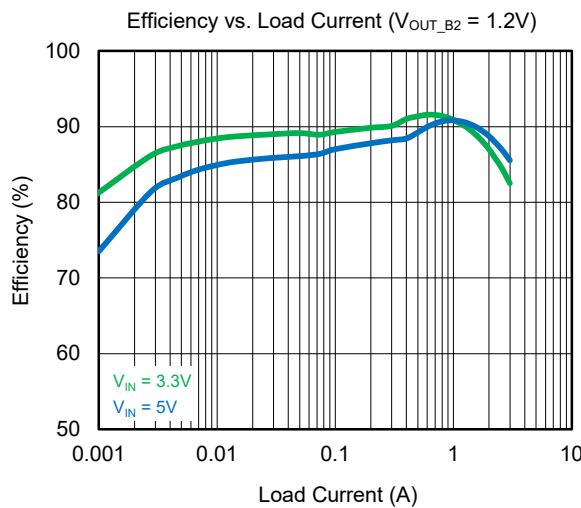
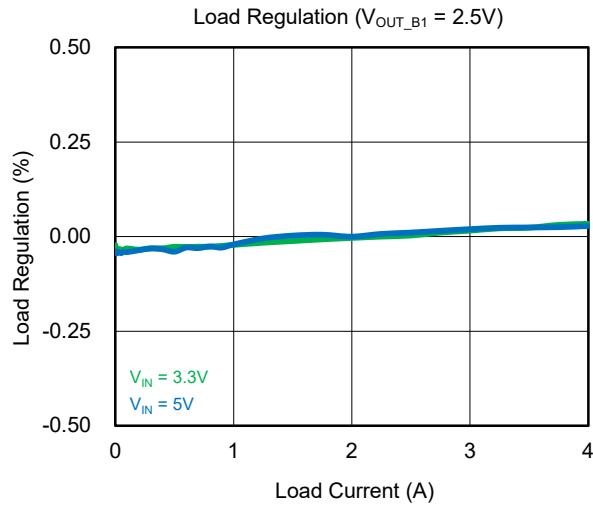
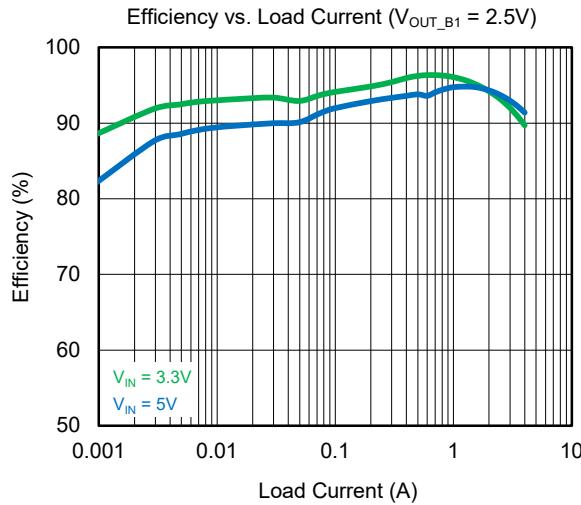
## ELECTRICAL CHARACTERISTICS (continued)

(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)


| PARAMETER                                                                                      | SYMBOL                     | CONDITIONS                                                                           | MIN  | TYP              | MAX  | UNITS             |
|------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|------|------------------|------|-------------------|
| <b>LDO2</b>                                                                                    |                            |                                                                                      |      |                  |      |                   |
| Operating Voltage Range                                                                        | V <sub>IN_L2</sub>         |                                                                                      | 2.7  |                  | 5.5  | V                 |
| Output Voltage Range                                                                           | V <sub>OUT_L2</sub>        | Configurable in 50mV steps                                                           | 1    |                  | 2.7  | V                 |
| Output Current                                                                                 | I <sub>OUT_L2</sub>        | AVIN = 2.7V to 5.5V, L2_ILIM_SET = 1                                                 | 0.4  |                  |      | A                 |
| Output Voltage Accuracy                                                                        | V <sub>OUT_L2_ACC</sub>    | AVIN - V <sub>OUT_L2</sub> > 0.4V                                                    | -1   | V <sub>SET</sub> | 1    | %                 |
|                                                                                                |                            | T <sub>J</sub> = +25°C                                                               | -1.5 | V <sub>SET</sub> | 1.5  | %                 |
| Line Regulation <sup>(1)</sup>                                                                 |                            | AVIN - V <sub>OUT_L2</sub> > 0.4V,<br>AVIN = 2.7V to 5.5V, I <sub>OUT_L2</sub> = 1mA |      | 0.5              |      | %/V               |
| Load Regulation <sup>(1)</sup>                                                                 |                            | I <sub>OUT_L2</sub> = 1mA to 400mA,<br>AVIN - V <sub>OUT_L2</sub> > 0.4V             |      | 0.5              |      | %/A               |
| Supply Current                                                                                 | I <sub>VIN_L2</sub>        | Regulator enabled no load, normal power mode                                         |      | 20               | 28   | µA                |
|                                                                                                |                            | Regulator enabled no load, low-power mode                                            |      | 7                | 15   | µA                |
| Soft-Start Period                                                                              | t <sub>SS_L2</sub>         | L2_SS = 0, 10%-90% of V <sub>OUT</sub>                                               | 55   |                  |      | µs                |
|                                                                                                |                            | L2_SS = 1, 10%-90% of V <sub>OUT</sub>                                               | 100  |                  |      |                   |
| Power Good UV Threshold                                                                        | V <sub>PG_L2_UV</sub>      | V <sub>OUT_L2</sub> rising, PG becomes high                                          | 81.5 | 85               | 88.5 | %V <sub>NOM</sub> |
| Power Good UV Hysteresis                                                                       | V <sub>PG_HYS_L2_UV</sub>  | V <sub>OUT_L2</sub> falling, PG becomes low                                          |      | 3                |      | %V <sub>NOM</sub> |
| Power Good OV Threshold                                                                        | V <sub>PG_L2_OV</sub>      | V <sub>OUT_L2</sub> rising, PG becomes low                                           | 111  | 115              | 119  | %V <sub>NOM</sub> |
| Power Good OV Hysteresis                                                                       | V <sub>PG_HYS_L2_OV</sub>  | V <sub>OUT_L2</sub> falling, PG becomes high                                         |      | 8                |      | %V <sub>NOM</sub> |
| Dropout Voltage                                                                                | V <sub>L2_DROP</sub>       | I <sub>OUT_L2</sub> = 200mA, AVIN > 2.7V,<br>L2_ILIM_SET = 0                         |      |                  | 200  | mV                |
|                                                                                                |                            | I <sub>OUT_L2</sub> = 400mA, AVIN > 2.7V,<br>L2_ILIM_SET = 1                         |      |                  | 300  |                   |
| Output Discharge Resistance <sup>(1)</sup>                                                     | R <sub>DISCH_L2</sub>      | L2_DISCH_SET[1:0] = 00                                                               |      | 10               |      | Ω                 |
|                                                                                                |                            | L2_DISCH_SET[1:0] = 01                                                               |      | 20               |      |                   |
|                                                                                                |                            | L2_DISCH_SET[1:0] = 10                                                               |      | 40               |      |                   |
|                                                                                                |                            | L2_DISCH_SET[1:0] = 11                                                               |      | 80               |      |                   |
| Output Current Limit<br>(Accuracy is only valid for register default setting, L2_ILIM_SET = 1) | I <sub>LIM_L2</sub>        | AVIN - V <sub>OUT_L2</sub> > 0.4V,<br>T <sub>J</sub> = +25°C                         | 280  | 400              |      | mA                |
|                                                                                                |                            |                                                                                      | 400  | 500              |      |                   |
| <b>LDO2 Load Switch</b>                                                                        |                            |                                                                                      |      |                  |      |                   |
| Load Switch Operation Range                                                                    | V <sub>IN_L2_LSW</sub>     |                                                                                      | 2.7  |                  | 5.5  | V                 |
| PMOS On-Resistance <sup>(1)</sup>                                                              | R <sub>DS_ON_L2_LSW</sub>  |                                                                                      |      | 200              |      | µΩ                |
| Load Switch Supply Current                                                                     | I <sub>VIN_L2_LSW</sub>    | LSW mode, no load                                                                    |      | 18               | 28   | µA                |
| Soft-Start Period <sup>(1)</sup>                                                               | t <sub>SS_L2_LSW</sub>     | AVIN = 3.3V, C <sub>OUT</sub> = 1µF                                                  |      | 190              |      | µs                |
| Output Current Limit<br>(Accuracy is only valid for register default setting, L2_ILIM_SET = 1) | I <sub>LIM_L2_LSW</sub>    | L2_ILIM_SET = 0, T <sub>J</sub> = +25°C                                              | 280  | 400              |      | mA                |
|                                                                                                |                            | L2_ILIM_SET = 1, T <sub>J</sub> = +25°C                                              | 400  | 500              |      |                   |
| Over-Voltage Protection Threshold <sup>(1)</sup>                                               | V <sub>OV_L2_LSW</sub>     |                                                                                      |      | 3.8              |      | V                 |
| OV Deglitch Time <sup>(1)</sup>                                                                | t <sub>DEG_L2_LSW_OV</sub> |                                                                                      |      | 20               |      | µs                |

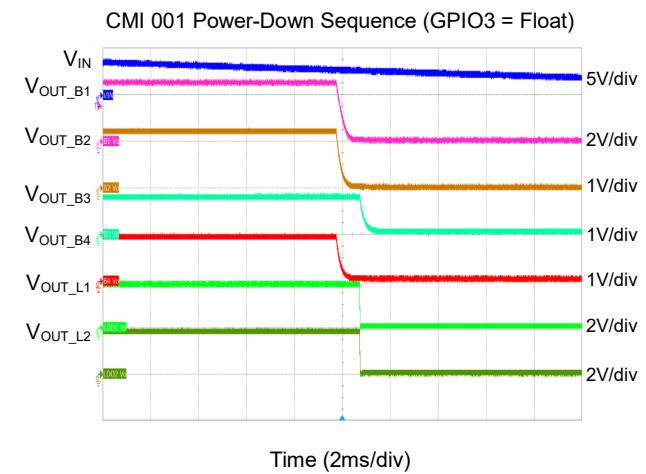
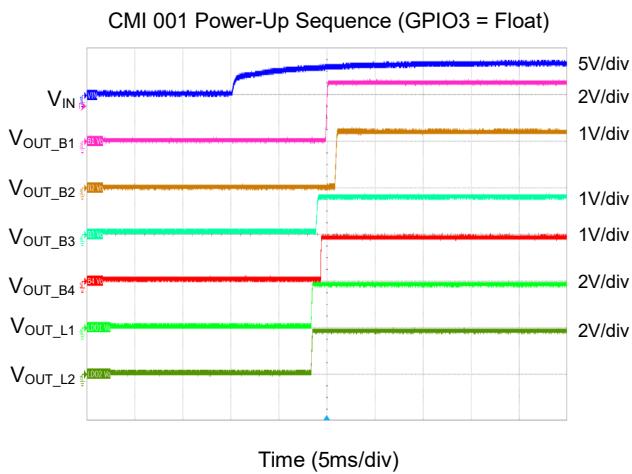
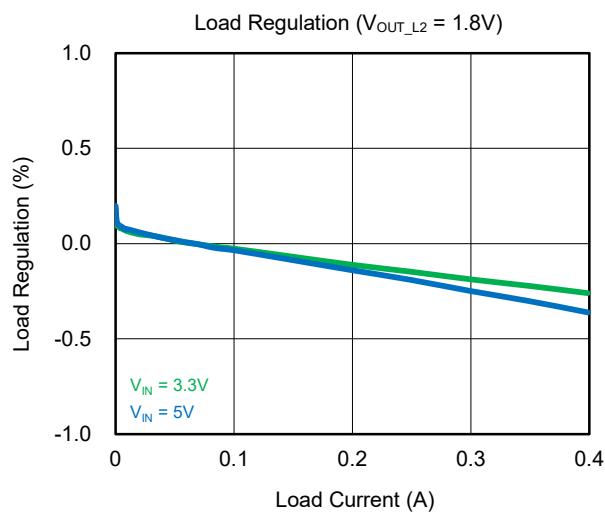
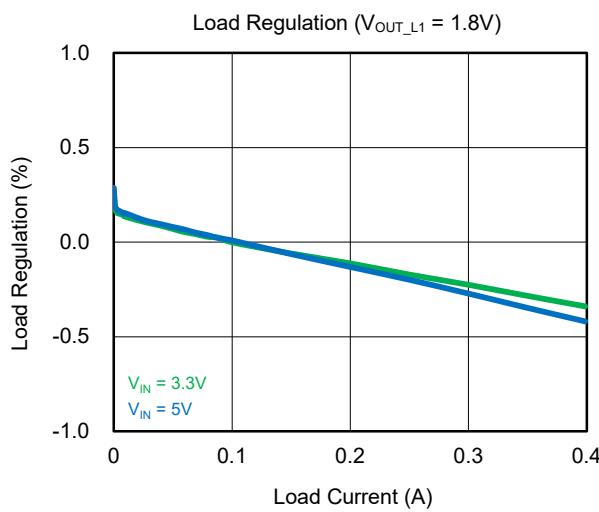
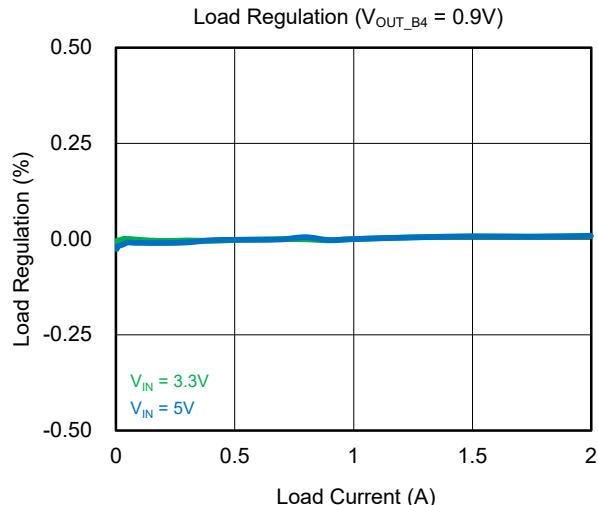
NOTE: 1. Guaranteed by design and laboratory test, not tested in production.

## ELECTRICAL CHARACTERISTICS (continued)

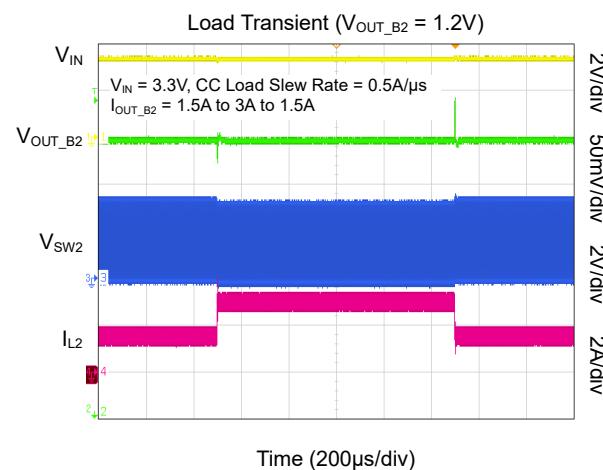
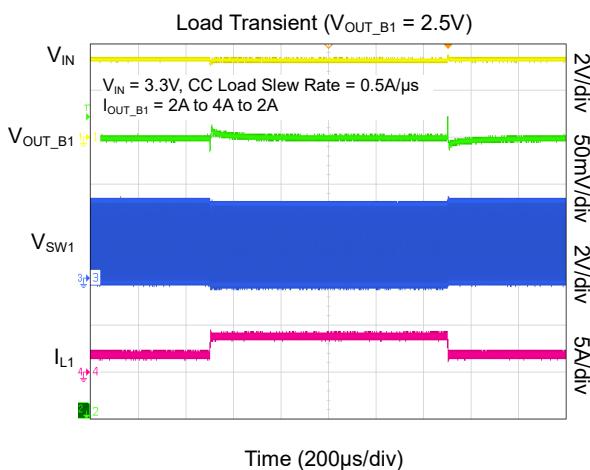
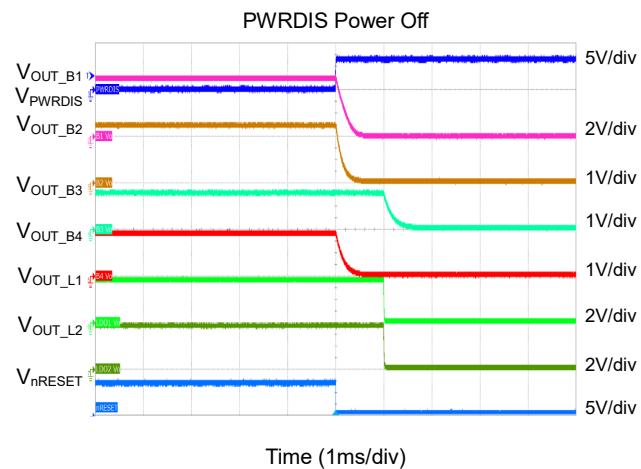
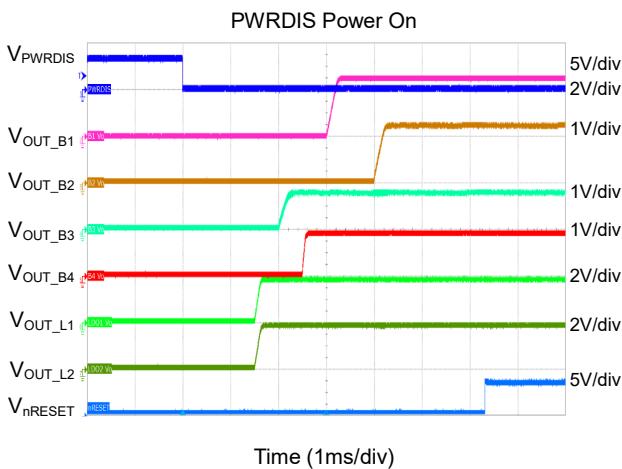
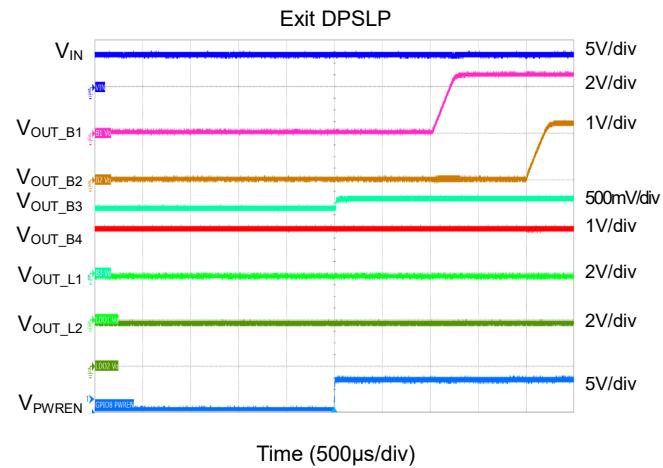
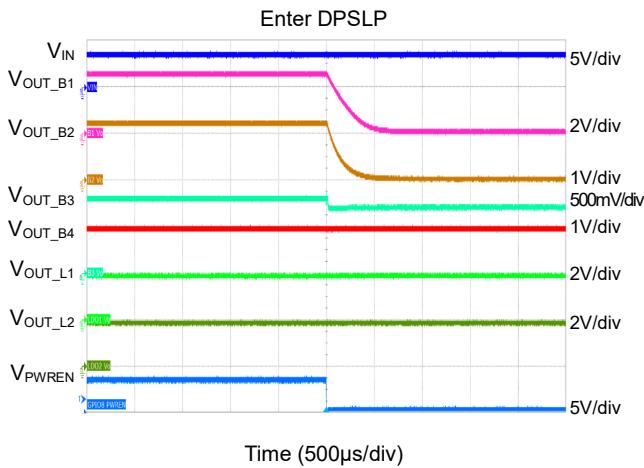






(V<sub>IN</sub> = 3.3V, T<sub>J</sub> = -40°C to +125°C, typical values are measured at T<sub>J</sub> = +25°C, unless otherwise noted.)

| PARAMETER                       | SYMBOL               | CONDITIONS                | MIN  | TYP | MAX  | UNITS |
|---------------------------------|----------------------|---------------------------|------|-----|------|-------|
| <b>I<sup>2</sup>C Interface</b> |                      |                           |      |     |      |       |
| SCL/SDA Input Low               | V <sub>IL_I2C</sub>  | AVIN = 3.3V               |      |     | 0.55 | V     |
| SCL/SDA Input High              | V <sub>IH_I2C</sub>  | AVIN = 3.3V               | 1.25 |     |      | V     |
| SDA Leakage Current             | V <sub>LKG_SDA</sub> | V <sub>SDA</sub> = 5V     |      |     | 1    | µA    |
| SDA Output Low                  | V <sub>OL_SDA</sub>  | I <sub>OL_SDA</sub> = 5mA |      |     | 0.35 | V     |
| SCL Clock Frequency             | f <sub>SCL</sub>     |                           |      |     | 3400 | kHz   |
| SCL Low Period                  | t <sub>LOW</sub>     |                           | 160  |     |      | µs    |
| SCL High Period                 | t <sub>HIGH</sub>    |                           | 60   |     |      | µs    |
| SDA Data Setup Time             | t <sub>SU_DAT</sub>  |                           | 20   |     |      | ns    |
| SDA Data Hold Time              | t <sub>HD_DAT</sub>  |                           | 0    |     |      | ns    |
| Start Setup Time                | t <sub>SU_STA</sub>  | For start condition       | 160  |     |      | ns    |
| Stop Setup Time                 | t <sub>SU_STO</sub>  | For stop condition        | 160  |     |      | ns    |
| Capacitance on SCL/SDA Pin      | C <sub>S</sub>       |                           |      |     | 10   | pF    |
| SDA/SCL Rise Time               | t <sub>R</sub>       | Device requirement        |      |     | 40   | ns    |
| SDA/SCL Fall Time               | t <sub>F</sub>       | Device requirement        |      |     | 40   | ns    |

I<sup>2</sup>C TIMING DIAGRAMFigure 1. I<sup>2</sup>C Timing Diagram

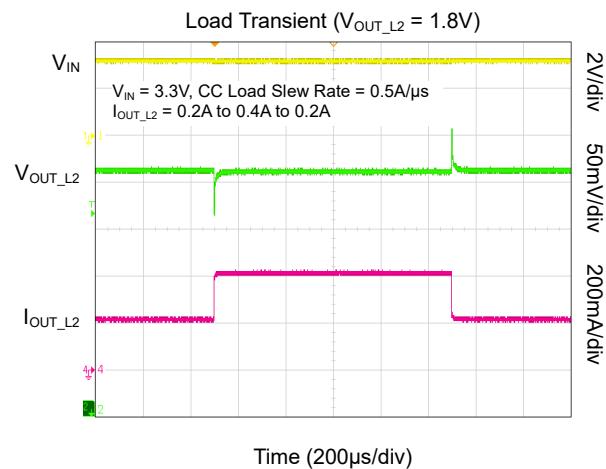
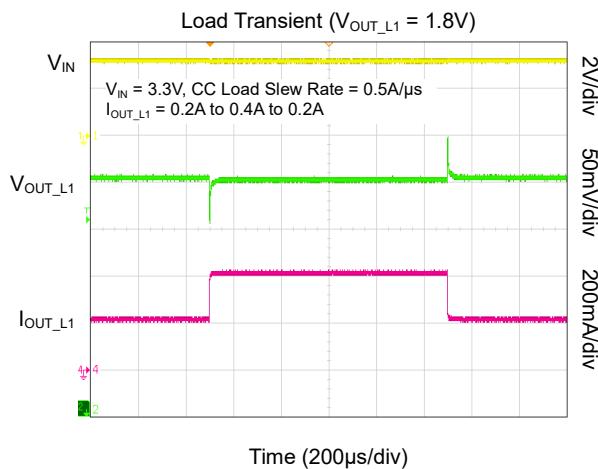
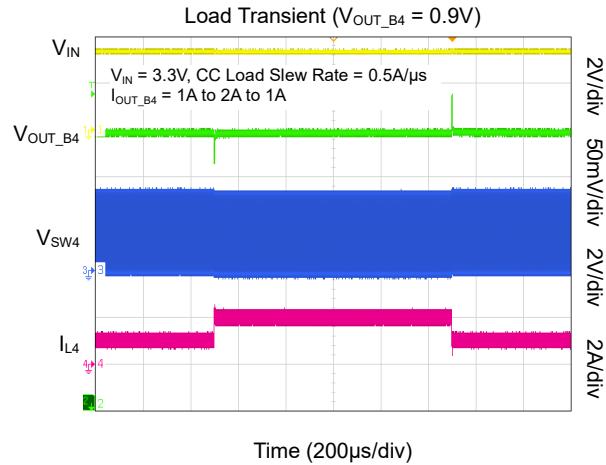
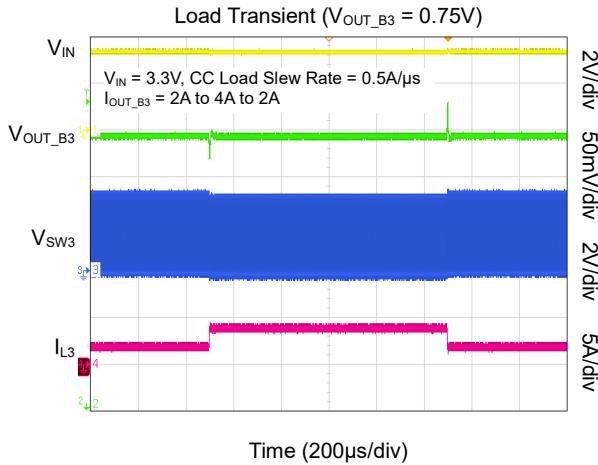





## TYPICAL PERFORMANCE CHARACTERISTICS

$T_J = +25^\circ\text{C}$ ,  $V_{IN} = 3.3\text{V}$ ,  $f = 2\text{MHz}$ ,  $L = 0.47\mu\text{H}$  (DCR =  $7.3\text{m}\Omega$ ), unless otherwise noted.


## TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$T_J = +25^\circ\text{C}$ ,  $V_{IN} = 3.3\text{V}$ ,  $f = 2\text{MHz}$ ,  $L = 0.47\mu\text{H}$  (DCR =  $7.3\text{m}\Omega$ ), unless otherwise noted.


## TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_J = +25^\circ\text{C}$ ,  $V_{IN} = 3.3\text{V}$ ,  $f = 2\text{MHz}$ ,  $L = 0.47\mu\text{H}$  (DCR =  $7.3\text{m}\Omega$ ), unless otherwise noted.

## TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$T_J = +25^\circ\text{C}$ ,  $V_{IN} = 3.3\text{V}$ ,  $f = 2\text{MHz}$ ,  $L = 0.47\mu\text{H}$  (DCR =  $7.3\text{m}\Omega$ ), unless otherwise noted.



## TYPICAL APPLICATION CIRCUIT

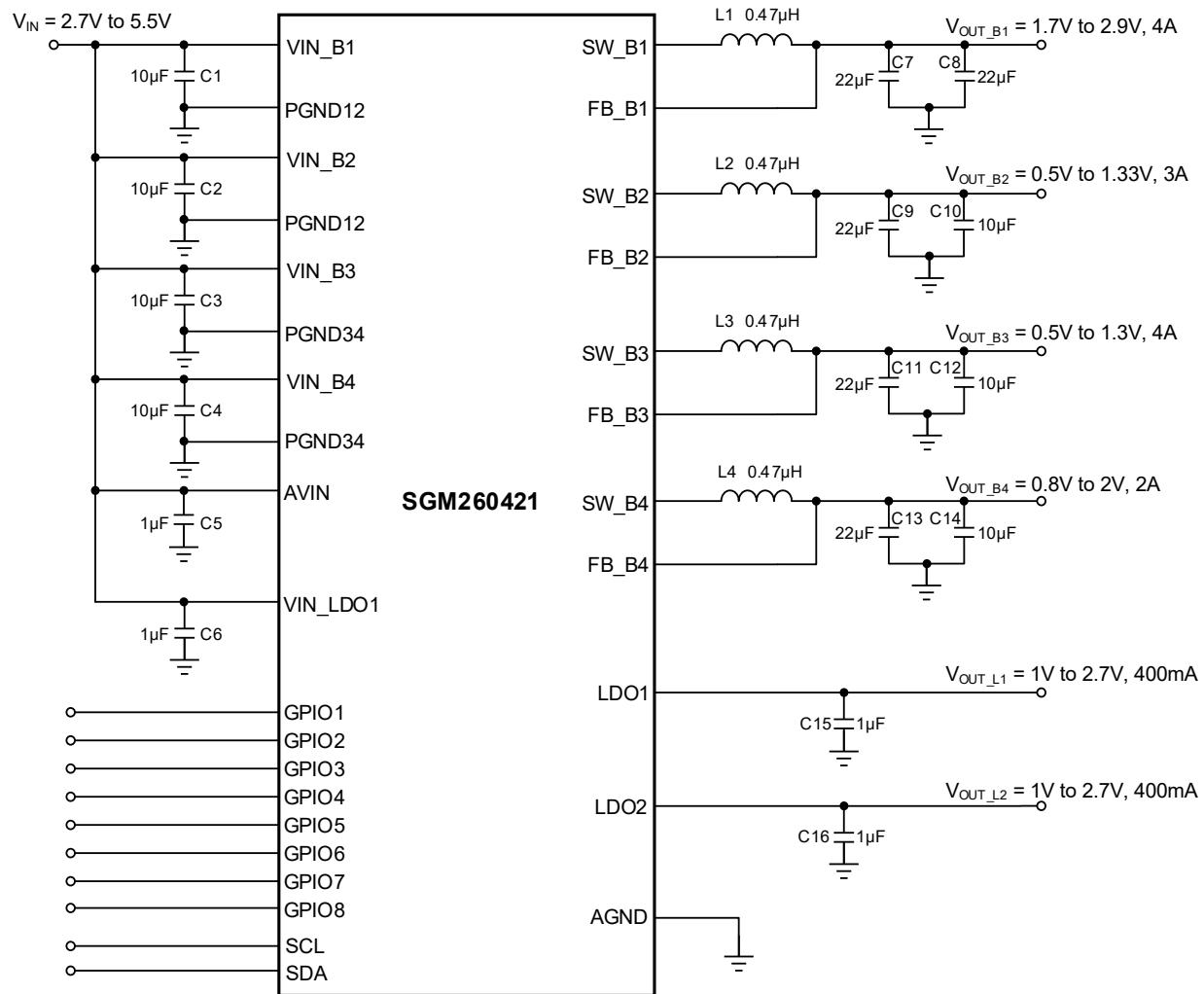



Figure 2. Typical Application Circuit

## FUNCTIONAL BLOCK DIAGRAM

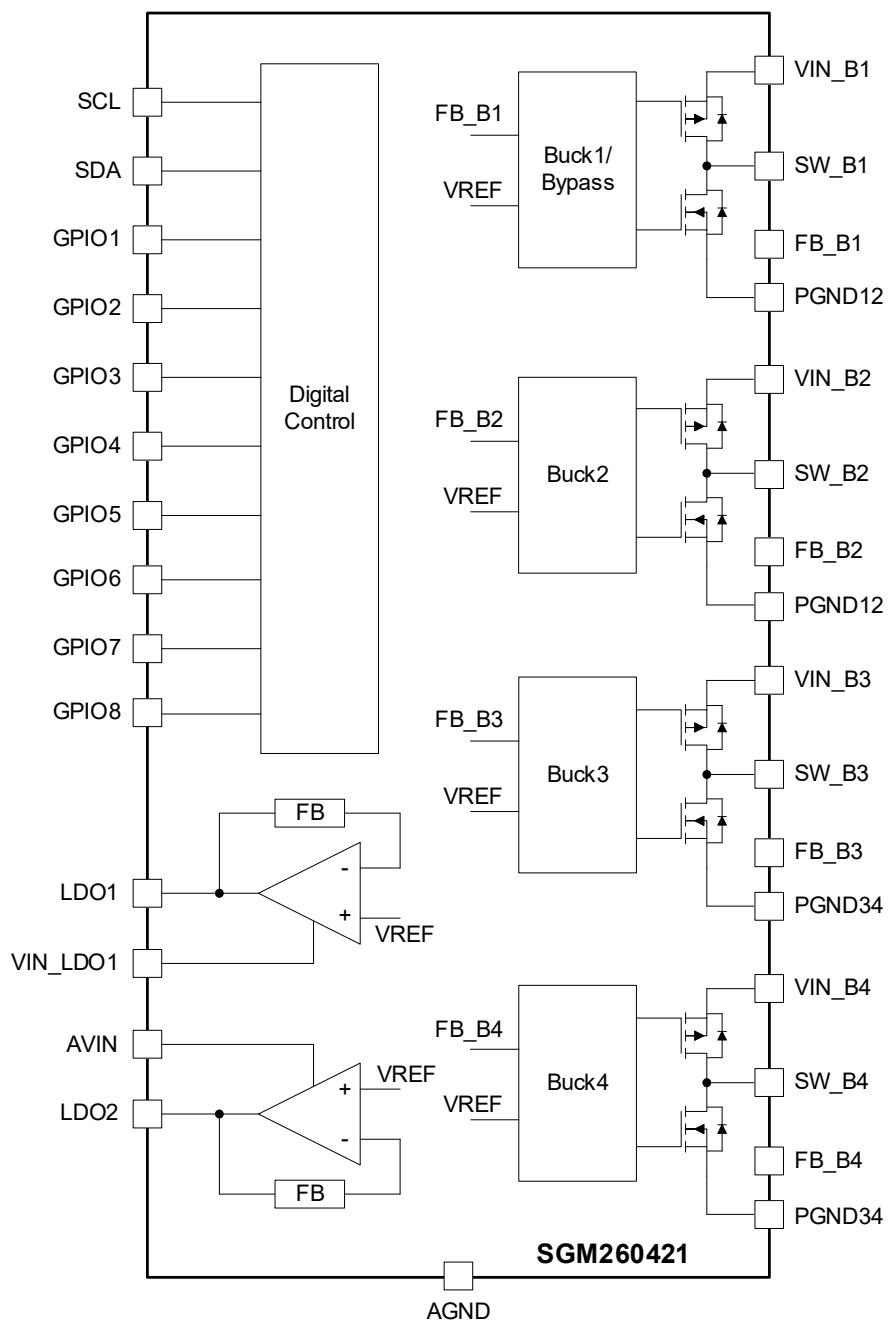



Figure 3. Block Diagram

## DETAILED DESCRIPTION: SYSTEM CONTROL

### General

The SGM260421 represents an integrated power management IC engineered for next-generation solid-state drive controllers. This system-on-chip solution is equipped with four high efficiency Buck converters and two LDOs, and has been specifically optimized for mission-critical storage controllers and industrial automation processors. This device achieves space-saving and cost-effective power delivery through advanced integration. SGM260421 contains a master controller governing critical operations: startup sequencing, turn-on delay, extra delay, turn-off delay, wake-up delay, voltage of each channel, soft-start time, SLEEP or DPSLP state, and fault conditions.

System parameters can be dynamically adjusted through I<sup>2</sup>C interface, without physical hardware modifications. A built-in bypass switch for Buck1 enhances sequencing flexibility in 3.3V power architectures.

The master controller continuously tracks all output channels, transmitting status information through I<sup>2</sup>C protocol communication and hardware-level status signals. User can configure fault thresholds and response mechanisms via I<sup>2</sup>C interface, including selective fault masking capabilities.

Factory-defined parameters for SGM260421 are established through Code Matrix Index (CMI). The device supports extensive customization for different GPIO configurations as well as voltage and current limit for each channel, etc. It is specifically defined for each SGM260421 CMI part number.

### I<sup>2</sup>C Serial Interface

Standard I<sup>2</sup>C interface is used to program SGM260421 parameters and get status reports. It operates as a slave device, and can be configured by factory to one of four 7-bit slave addresses. The base address incorporates an extension bit which defines the operation is read or write.

The I<sup>2</sup>C controller does not have a timeout feature. However, whenever it detects a new start signal, it will immediately stop and reset the current data processing, even if a valid data packet is being transmitted.

I<sup>2</sup>C is 2-wire serial communication interface that can connect one (or more) master device(s) to some slave devices for two-way communication. The bus lines are named serial data (SDA) and serial clock (SCL). The SDA pin operates in open-drain configuration and requires an external pull-up resistor.

**Table 1. SGM260421 I<sup>2</sup>C Addresses**

| 7-Bit Slave Address | 8-Bit Write Address | 8-Bit Read Address |
|---------------------|---------------------|--------------------|
| 0x25                | 0100101             | 0x4A               |
| 0x27                | 0100111             | 0x4E               |
| 0x67                | 1100111             | 0xCE               |
| 0x6B                | 1101011             | 0xD6               |
|                     |                     | 0xD7               |

### I<sup>2</sup>C Registers

The SGM260421 integrates internal configuration registers that store critical operational parameters, including output voltage setting, switching frequency, startup sequencing, fault detection thresholds, fault mask configurations, etc. These registers provide the core programmability of the device. Two register categories are implemented.

#### Basic Volatile

These registers are R/W (read/write) and R (read only). After power-up, user can modify R/W registers to adjust IC functions, such as masking faults. R registers display IC status, including faults. All changes are lost on power cycle. Default values are fixed and cannot be altered by the factory or user.

#### Basic Non-Volatile

These registers are R/W and R types. Once the IC is powered up, user can change the R/W registers to adjust functions like output voltage, startup delay, and current limit thresholds. These modifications are lost when power is cycled. The default values can be set at the factory to optimize the IC for specific applications. Please contact SGMICRO for custom options and minimum order quantities. When updating only certain bits within a register, be careful not to alter the other bits, as doing so may cause unexpected device behavior.

## DETAILED DESCRIPTION: SYSTEM CONTROL (continued)

## State Machine

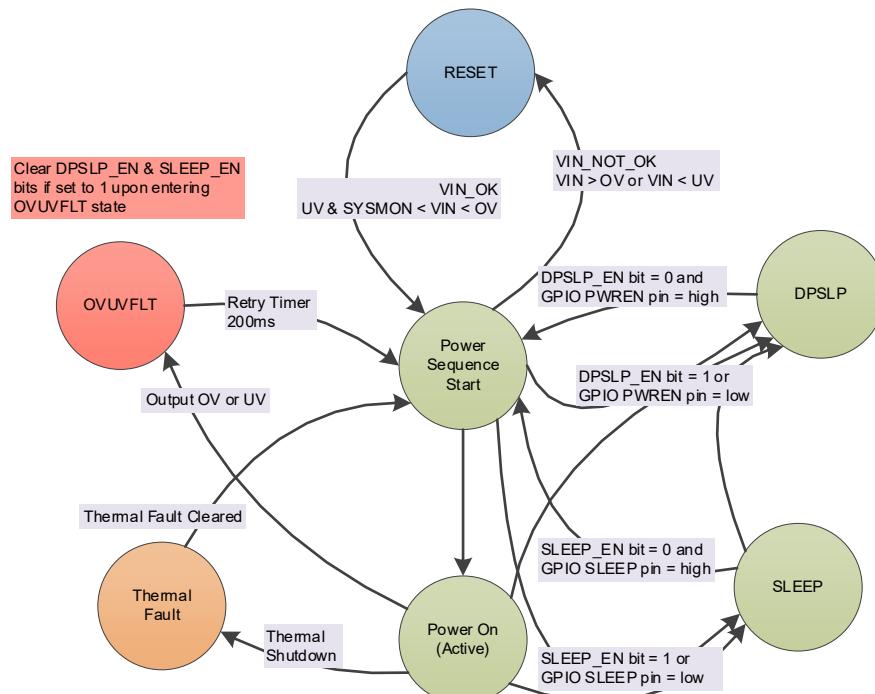



Figure 4. State Machine

**RESET State**

During the RESET state, the SGM260421 monitors AVIN until it stabilizes within the acceptable range specified by VIN\_UV, SYSMON and VIN\_OV. In this state, all regulators remain off and the outputs are maintained at a low level. When the input voltage drops below the VIN\_UV threshold or exceed the VIN\_OV limit, the IC will revert to the RESET state regardless of its current operating state.

**Power Sequence Start State**

During the power sequence start state, the system is in a transitional phase as the regulators begin their activation. During this period, outputs are activated and start their ramp-up. As soon as the regulators stabilize and enter regulation, the IC promptly shifts to the active, SLEEP or DPSLP state.

**Power On (Active) State**

The active state represents normal operation, where the input voltage remains within the acceptable range, all outputs are enabled, and no faults are detected.

**SLEEP State**

The SLEEP state represents a configurable low-power state. In SLEEP state, each output of SGM260421 can be configured to remain on/off.

Buck2 and Buck3 can be configured to regulate at their respective DVS\_VSET voltages. When transitioning into/out of SLEEP mode, the outputs follow their programmed sequencing delay time for turning on/off. When SGM260421 transitions into SLEEP mode, it disables some internal circuits to activate a low-power mode (LPM), thereby reducing the VIN supply current for power saving.

The IC supports entry into SLEEP state through two methods: setting the SLEEP\_EN bit in the I<sup>2</sup>C register, or pulling low GPIO input.

1. When a GPIOx configured for the SLEEP function transitions from high voltage level to low voltage level, the IC enters the SLEEP state.
2. Apart from external hardware-based SLEEP state control, the IC is also capable of entering the SLEEP state via the I<sup>2</sup>C interface, when the SLEEP\_EN bit is set to 1, the PMIC switches to the SLEEP state.

Exit from SLEEP state occurs when both the I<sup>2</sup>C SLEEP\_EN bit and GPIO are de-asserted. In the absence of a GPIO configured to manage SLEEP state, only the SLEEP\_EN bit dictates access (entry and exit) to this state.

## DETAILED DESCRIPTION: SYSTEM CONTROL (continued)

**DPSLP State**

The DPSLP state is designed for even lower power consumption than the SLEEP mode. Each output can be individually set to be on/off in DPSLP mode, with setting that may differ from those in the SLEEP state. Buck2 and Buck3 can also be configured to regulate at their respective DVS\_VSET voltages. When transitioning into/out of DPSLP mode, the outputs follow their programmed sequencing delay time for turning on/off. When SGM260421 transitions into DPSLP mode, it also disables some internal circuits to activate LPM, thereby reducing the VIN supply current for power saving.

The IC supports entry into DPSLP state through two methods: setting the DPSLP\_EN bit in the I<sup>2</sup>C register, or pulling low GPIO input.

1. When a GPIOx configured for the PWREN function transitions from high voltage level to low voltage level, the IC enters the DPSLP State.
2. Apart from external hardware-based DPSLP state control, the IC is also capable of entering the DPSLP state via the I<sup>2</sup>C interface; when the DPSLP\_EN bit is set to 1, the PMIC switches to the DPSLP state.

Exit from DPSLP state occurs when both the I<sup>2</sup>C DPSLP\_EN bit and GPIO are de-asserted. In the absence of a GPIO configured to manage DPSLP state, only the DPSLP\_EN bit dictates access (entry and exit) to this state.

**THERMAL State**

If the IC temperature rises above +155°C, it enters the THERMAL state, turning off all regulators and asserting nRESET for protection. The PMIC exits this state and reverts to startup sequence only when the die temperature drops below +125°C.

**OVUVFLT State**

When the output voltage of any regulator goes above the over-voltage (OV) threshold or below the under-voltage (UV) threshold after soft-start, the IC enters OVUVFLT state. All regulators turn off, and the nRESET is pulled low. The system tries to restart after a 200ms delay. If the OV/UV condition remains, the IC returns to OVUVFLT state, repeating this cycle until the fault is removed or input power is disconnected. While over-current conditions do not directly trigger OVUVFLT state, sustained over-current causing UV conditions will lead to PMIC enter OVUVFLT state.

**Sequencing**

The SGM260421 delivers advanced sequencing control for multi-rail power systems. Each of its six outputs has five basic programmable parameters: turn-on delay, turn-off delay, wake-up delay, soft-start time, and output voltage. All parameters are programmed through dedicated configuration registers, enabling application specific optimization without hardware changes.

**Turn-On Delay**

Defined as the duration between SYS\_OK (indicating OTP register initialization and GPIO status detection are complete) and the start of output activation, the turn-on delay for each output is programmed using its I<sup>2</sup>C ON\_DLY bit. It can be changed after IC powers up, these delays are volatile and revert to factory settings when power is recycled. In addition to the turn-on delay, each channel can also add an extra delay based on the status of GPIO3 during startup. This means that the actual startup delay is composed of a turn-on delay and an extra delay.

**Turn-Off Delay**

The turn-off delay is measured as the time between the assertion of SLEEP/DPSLP mode and the start of output turn-off, and it also applies when the PMIC is disabled via PWRDIS or VIN shutdown. The delay of each output is programmed using its I<sup>2</sup>C OFF\_DLY bit. These delays can be changed after power on, but are volatile, returning to factory defaults upon power recycling.

**Wake-Up Delay**

The enable delay time for a regulator exiting SLEEP or DPSLP mode is set by this wake-up delay timer. It is measured from the rising edge of the SLEEP/DPSLP signal until the regulator turns on.

Table 2. The Delay Time Contributions to the Sequence

| Sequence                    | ON_DLY | Extra_DLY | OFF_DLY | WAKE_UP_DLY |
|-----------------------------|--------|-----------|---------|-------------|
| Power-Up                    | Yes    | Yes       | -       | -           |
| Power-Off                   | -      | -         | Yes     | -           |
| Shutdown PMIC by PWRDIS = H | -      | -         | Yes     | -           |
| Startup PMIC by PWRDIS = L  | Yes    | Yes       | -       | -           |
| Enter SLEEP/DPSLP           | -      | -         | Yes     | -           |
| Exit SLEEP/DPSLP            | -      | -         | -       | Yes         |

## DETAILED DESCRIPTION: SYSTEM CONTROL (continued)

**Soft-Start Time**

Defined as the time it takes an output ramp from 10% to 90% of its target voltage, the soft-start time for each output is programmed using dedicated I<sup>2</sup>C soft-start bits. These settings can be adjusted after power-up but are volatile, resetting to factory values when power is cycled.

**Output Voltage**

Output voltages for Bucks are programmed via respective I<sup>2</sup>C bits (Bx\_VSETx). During active mode, Buck2 regulates to B2\_VSET0/1 as determined by GPIO2 configuration, and in SLEEP/DPSLP state, it can be set to B2\_DVS\_VSET through either the I<sup>2</sup>C interface or a GPIO input. Likewise, Buck3 regulates to B3\_VSET0/1/2 in active mode (based on GPIO1/3 settings) and supports programming to B3\_DVS\_VSET0/1/2 in SLEEP/DPSLP state via I<sup>2</sup>C or GPIO input.

The Bx\_VSETx voltage of each output can be modified via I<sup>2</sup>C after the IC powers up, but such settings are volatile and reset to factory defaults upon power recycling. All Bucks and LDOs output voltages are also adjustable on-the-fly by updating their I<sup>2</sup>C registers with new values.

**Dynamic Voltage Scaling**

Dynamic voltage scaling (DVS) for Buck2 and Buck3 is available. DVS enables systems to save power by rapidly adjusting micro-processor performance in response to load change.

The IC is configurable to transition into DVS upon entering SLEEP or DPSLP mode.

With B2/3\_DVS\_AT\_SLEEP bit = 1, any condition that puts the IC into SLEEP state puts the Buck2/3 into DVS mode. With B2/3\_DVS\_AT\_DPSLP bit = 1, any condition that puts the IC into DPSLP state also puts the Buck2/3 into DVS mode.

Similar to any power supply, changing an output voltage too quickly can demand a current beyond the current limit threshold. It is critical for users to verify that voltage step, slew rate, and load current parameters avoid creating an instantaneous load current that results in current limit condition.

**SYSMON, SYSWARN and POK\_OV**

SGM260421 monitoring the input voltage (AVIN) to ensure compliance with system-level operational limits, the outputs disabled until AVIN exceeds the

SYSMON rising threshold. This threshold is programmable between 2.725V and 3.1V, with a step of 25mV. Additionally, if AVIN falls below the SYSMON falling threshold, outputs persist in normal operation as long as AVIN stays above UVLO falling threshold.

SYSWARN is a warning signal, it triggers when the AVIN voltage falls below its monitored SYSWARN falling threshold. The SYSWARN rising threshold is configurable between 2.775V and 3.15V, with a step of 25mV.

A GPIO pin can be assigned to the SYSMON/SYSWARN output signals, both of which are real-time. Figure 5 shows the details (note: VIN\_LVL bit = 0).

POK\_OV is a warning indicator that alerts when the AVIN voltage exceeds the voltage it monitors. Additionally, the system can track the power good status of AVIN (the input source) using the two signals, SYSWARN and POK\_OV.

Offering real-time reactions, the indicator bits for SYSMON, SYSWARN, and POK\_OV reflect AVIN status dynamically. The POK\_OV bit set to 1 means AVIN exceeds its monitoring voltage, so keep this bit at 0 to ensure AVIN stays in the correct operational range. Conversely, SYSMON and SYSWARN bits become 0 when AVIN is below their configured thresholds, maintain them at 1 for normal operation.

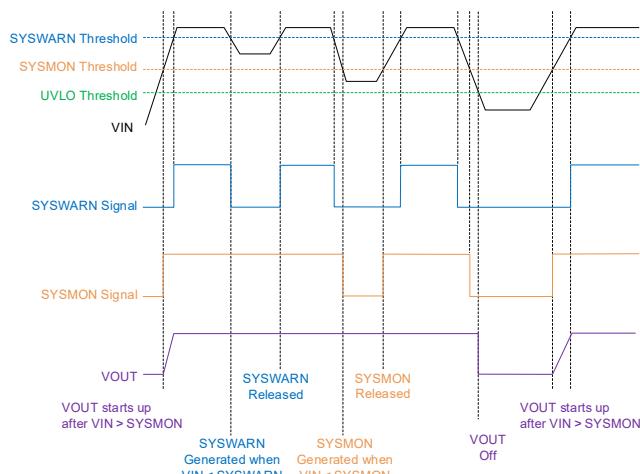



Figure 5. SYSMON and SYSWARN Signals

## DETAILED DESCRIPTION: SYSTEM CONTROL (continued)

**AVIN UVLO and AVIN OV**

The input voltage at the AVIN pin is monitored by the SGM260421 for UVLO conditions. Upon the voltage dropping below the UVLO threshold, the IC is in the RESET state, with all outputs disabled and nRESET asserted low. The UVLO falling threshold can be set to either 2.5V or 3.5V via the factory-programmable VIN\_LVL bit.

Operation of the PMIC begins when the AVIN voltage is over the SYSMON threshold. SYSWARN and POK\_OV can be used to monitor the AVIN. A fault status is generated and sent through the nIRQ signal to alert the system if AVIN falls below SYSWARN (even below SYSMON) or exceeds POK\_OV, though the PMIC remains operational in warning status. The PMIC is forced to shut down only if AVIN further getting worse to below the UVLO falling threshold or above the OV rising threshold.

**Output Under/Over-Voltage**

SGM260421 monitors output voltages for UV/OV conditions. When an output entering a UV/OV fault condition, the IC enters the OVUVFLT state (turning off all outputs for 200ms), then moves to the power start sequence state to restart using the programmed power-up sequence. Trigger current limit may also cause a shutdown if their voltage drops below the UV threshold.

The Lx\_OVP\_EN bit controls the LDO output over-voltage (OV) function. With Lx\_OVP\_EN set to 0, the IC is prevented from entering the OVUVFLT state when LDO OV fault occurs. Under this condition, the LDO output voltage is discharged when it exceeds 115% of the reference voltage and stops discharging once it falls below 107% if EN\_DISCHG\_Lx\_OVP being set to 1.

UV threshold:

For Bucks, the output voltage drops below 89.5% of the reference.

For LDOs, the output voltage drops below 82% of the reference.

OV threshold:

For Bucks, the output voltage exceeds 110% of the reference.

For LDOs, the output voltage exceeds 115% of the reference.

**Output Current Limit**

Buck converters provide over-current limit protection by detecting the low-side MOSFET current (inductor valley current). If the valley current is above the configured current limit, the low-side MOSFET is kept on to pull the inductor current down. Once the valley current is lower than the current limit, the control loop changes from the over-current (OC) loop to the normal loop. Four over-current levels are applied to each Buck converter in the SGM260421, refer to register tables for more details.

For LDOs, over-current thresholds are determined by the Output Current Limit setting of each LDO. When the output current reaches this threshold, the LDO limits its output current.

**Thermal Warning and Thermal Shutdown**

The SGM260421 continuously monitors its internal die temperature. It issues a warning via the nIRQ signal when the temperature exceeds the thermal interrupt threshold (typically +125°C) and generates a fault report when it rises above the thermal shutdown temperature (typically +155°C). A temperature fault transitions the state machine into the thermal fault state and turn off all outputs.

**Status and Flag**

The AVIN status, OT, nRESET, and nIRQ monitored in the TOP\_STATUS\_REG, along with the outputs' POK status monitored in the RAIL\_STATUS\_REG, are all real-time signals. These signals are designed as level-triggered.

Output UV, OV, and current limit events are recorded by the flags in the RAIL\_FLAG\_REGx, which are designed as edge-triggered signals. A fault triggers the related bit to latch the fault status even the fault is removed. Read the bit to clear when the fault condition is removed.

The TOP\_STATUS\_REG, RAIL\_STATUS\_REG, and RAIL\_FLAG\_REGx form the fault code system, which records what happen in the present. When there is a problem with the power system of an SSD application, reading these register values will help users quickly understand what has happened.

## GPIO CONFIGURATION

### General Description

SGM260421 has 8 configurable GPIOs. Four of these (GPIO1/2/3/4) are designed for 3-state inputs (high, float, low), whereas the others support only 2-state inputs. GPIO1 can be set as nRESET or Buck3 voltage select function. With the exception of GPIO1, all GPIOs can be configured to implement various functions, including nIRQ, SYSMON, SYSWARN, EXT\_EN, I<sup>2</sup>C controlled output, PG of internal rail, SLEEP/PWREN, PWRDIS, EN of internal rail. In addition to above features, GPIO2/3/4/6 can also be configured for additional functions, including an operation mode, a default output voltage, and an extra power-up delay time selector.

### nRESET

The nRESET signal monitors the input voltage and regulator output validity to trigger a reset when either the input voltage or regulator outputs are abnormal. The nRESET output signal is typically connected to both the input voltage and the power good (PG) signals of enabled regulators to ensure proper operation. Only GPIO1 can be set as nRESET. Below events can assert nRESET low:

- Input Voltage Power Bad: Input OV or UV
- Thermal Shutdown
- PMIC Disabled by PWRDIS
- Enabled Rails' Output Power Bad: Output OV or UV

After the power-up sequence, the input voltage and regulator outputs being power good (PG) is indicated by nRESET = H, while power bad (PBAD) is indicated by nRESET = L.

The nRESET\_MASK\_REG provides the function of masking any output PBAD, VIN\_OV, and OT events. By setting the corresponding bits to 1, nRESET is configured to ignore PBAD events on masked rails. Any PBAD event on an unmasked rail will cause nRESET to assert low. In addition, the power good delay time, measured from the rising edge of Buck3 PG to that of nRESET, can be programmed in the nRST\_DLY bits.

The nRESET signal is isolated from disabled regulators: even if a PG signal of regulator is unmasked, the disabled regulator cannot affect nRESET. This isolation avoids nRESET triggering when the regulator is shut down by user command. In SLEEP/DPSLP status, nRESET remains asserted high, even with some rails are turned off.

### nIRQ

GPIO2~8 can be configured to nIRQ output. Integrated into the fault code system, the nIRQ system records all faults in dedicated internal registers and selects which faults to export through nIRQ\_MASK\_REG.

The SGM260421 contains several faults protection that can assert nIRQ:

- Input POK\_OV
- Input OV
- Input Voltage Drops below SYSMON
- Input Voltage Drops below SYSWARN
- Output OV/UV
- Thermal Warning
- Thermal Shutdown

The nIRQ system contains two registers, nIRQ\_FLAG\_REG (REG0x05) and nIRQ\_MASK\_REG (REG0x06), where nIRQ\_FLAG\_REG records fault flags, which is latched bits that remain asserted until read via I<sup>2</sup>C and the fault is removed.

The nIRQ\_MASK\_REG controls whether the fault flags in the nIRQ\_FLAG\_REG are blocked or allowed to affect the nIRQ output (active-low). If a fault is recorded but masked by the nIRQ system, the nIRQ output ignores the recorded fault, if the fault is recorded and unmasked, the GPIO configured as nIRQ asserts a low-level signal. The nIRQ only de-asserts after two events: the fault condition is no longer present, and the corresponding fault bit in the nIRQ\_FLAG\_REG is read via I<sup>2</sup>C.

### SYSMON

GPIO2~8 can be configured to output active-low SYSMON signals for host system monitoring. It gets low when AVIN < SYSMON falling threshold, and it gets high when AVIN > SYSMON rising threshold. It is a real-time signal.

### SYSWARN

GPIO2~8 can be configured to output active-low SYSWARN signals for host system monitoring. It gets low when AVIN < SYSWARN falling threshold, and it gets high when AVIN > SYSWARN rising threshold. It is a real-time signal.

## GPIO CONFIGURATION (continued)

### EXT\_EN

GPIO2~8 can be configured to EXT\_EN. The EXT\_EN is a GPIO output function for enabling external power supplies, facilitating their integration into the system-level startup sequence. The EXT\_EN output is activated by one of the internal PG signals, SYSMON and GPIOs, which can be programmed to have a delay time via the EXT\_EN\_ON\_DLY/EXT\_EN\_OFF\_DLY bit.

The EXT\_EN signal asserts low when the SGM260421 initiates a power-down sequence due to protection events (e.g., VIN OV, OT, PWRDIS = H, or output rails experiencing OV/UV faults). Additionally, the EXT\_EN can be configured to enable or disable in SLEEP/DPSLP mode via an I<sup>2</sup>C register.

### I<sup>2</sup>C Controlled Output

GPIO2~8 can be configured as I<sup>2</sup>C-controlled outputs, where a register bit defines the output state as either high or low.

### PG of Internal Rails

GPIO2~8 can be configured as the PG of the internal rail. The internal PG (power good) bit of a regulator can be connected to a GPIO. This PG function indicates that the regulator output voltage is maintained within regulation.

### SLEEP/PWREN

GPIO2~8 can be configured as SLEEP/PWREN inputs. These digital input signals determine whether the IC operates in power on mode or SLEEP/DPSLP mode. For details, refer to the SLEEP/DPSLP state section.

The SLEEP/DPSLP state is entered by pulling SLEEP/PWREN low, during which Buck2 and Buck3 can be configured to remain turn on, DVS mode or shutdown. Buck1/4 and the LDOs can be configured to remain turn-on or shutdown.

### PWRDIS

GPIO2~8 can be configured as PWRDIS. Upon the PWRDIS signal going high, the PMIC enter the power-off sequence.

### EN of Internal Rail

GPIO2~8 can be configured as EN of internal rail. Which allowing user to control the internal rail on/off. For system-level integration, the PG signal of external rail may be connected to these GPIOs to incorporate external power supplies into the startup sequence.

### GPIO1

GPIO1 can be configured as nRESET signal or Buck3 voltage select. If GPIO1 is configured to Buck3 voltage select function, once AVIN is valid, the GPIO1 status is checked and latched immediately. Please see Table 3 for the description of GPIO1 additional configurable function.

**Table 3. GPIO1 Additional Configurable Function**

| GPIO1 Status                | High      | Float     | Low       |
|-----------------------------|-----------|-----------|-----------|
| Buck3 Output                | VSET0     | VSET1     | VSET2     |
| Buck3 Output in SLEEP/DPSLP | DVS_VSET0 | DVS_VSET1 | DVS_VSET2 |

### GPIO2

GPIO2 has an additional configurable function, Buck1/Buck2 operation mode and voltage select. If GPIO2 is configured to this function, once AVIN is valid, the GPIO2 status is checked and latched immediately. When GPIO2 is not set as Buck1/Buck2 operation mode and voltage select at factory. Buck1 works in Buck mode and output voltage is set by B1\_VSET0, and Buck2 output voltage is set by B2\_VSET0. Please see Table 4 for the description of GPIO2 additional configurable function.

**Table 4. GPIO2 Additional Configurable Function**

| GPIO2 Status | High  | Float | Low   |
|--------------|-------|-------|-------|
| Buck1 Output | LSW   | VSET0 | VSET1 |
| Buck2 Output | VSET0 | VSET0 | VSET1 |

## GPIO CONFIGURATION (continued)

### GPIO3

GPIO3 has an additional configurable function, B3 voltage select and all the rails extra power-up delay time and Buck1/Buck2 wake-up delay. If GPIO3 is configured to this function, once AVIN is valid, the GPIO3 status is checked and latched immediately. Please see Table 5 for the description of GPIO3 additional configurable function. The extra delay time in Table 5 is the default CMI 001 configuration. This extra delay time doesn't affect wake-up delay time. For other delay time configuration, please contact SGMICRO.

If both GPIO1 and GPIO3 are configured to Buck3 voltage select function, Buck3 voltage is determined by GPIO1 status, and GPIO3 only selects the extra delay time of Buck3. Otherwise, if neither GPIO1 nor GPIO3 is configured to Buck3 voltage select function at factory, Buck3 voltage is determined by B3\_VSET0 or B3\_DVS\_VSET0. Besides, extra power-up delay time and wake-up delay follow the set of the float column in Table 5, when GPIO3 is not configured as this function.

**Table 5. GPIO3 Additional Configurable Function**

| GPIO3 Status                | High      | Float     | Low       |
|-----------------------------|-----------|-----------|-----------|
| Buck3 Output                | VSET0     | VSET1     | VSET2     |
| Buck3 Output in SLEEP/DPSLP | DVS_VSET0 | DVS_VSET1 | DVS_VSET2 |
| Buck1 Wake-Up Delay         | 2ms       | 1ms       | 1ms       |
| Buck2 Wake-Up Delay         | 1ms       | 2ms       | 2ms       |
| Extra Power-Up Delay Time   | Buck1     | +1ms      | +0ms      |
|                             | Buck2     | +0ms      | +1ms      |
|                             | Buck3     | +0ms      | +0ms      |
|                             | Buck4     | +0ms      | +0ms      |
|                             | L1        | +0ms      | +0ms      |
|                             | L2        | +0ms      | +0ms      |

### GPIO4

GPIO4 has an additional configurable function, B4/L1 operation mode and voltage select. If GPIO4 is configured to this function, once AVIN is valid, the GPIO4 status is checked and latched immediately. Please see Table 6 for the description of GPIO4 additional configurable function. When GPIO4 is not set as B4/L1 operation mode and voltage select at factory, the output voltage is set by the VSET0 register, and the Buck or LDO operation is set by B4\_MODE register at factory. Likewise, LDO1 V<sub>OUT</sub> is set by VSET0, LDO1 mode is set by L1\_MODE bit at factory.

**Table 6. GPIO4 Additional Configurable Function**

| GPIO4 Status | High        | Float                                 | Low                                  |
|--------------|-------------|---------------------------------------|--------------------------------------|
| Buck4 Output | Buck: VSET0 | B4_MODE_AT_GPIO4_F = 0<br>Buck: VSET2 | Buck: VSET1                          |
|              |             | B4_MODE_AT_GPIO4_F = 1<br>LDO: VSET2  |                                      |
| LDO1 Output  | VSET0       | L1_MODE_AT_GPIO4_F = 0<br>LDO: VSET0  | L1_MODE_AT_GPIO4_L = 0<br>LDO: VSET1 |
|              |             | L1_MODE_AT_GPIO4_F = 1<br>LSW         | L1_MODE_AT_GPIO4_L = 1<br>LSW        |

### GPIO6

GPIO6 has an additional configurable function, L2 operation mode. If GPIO6 is configured to this function, once AVIN is valid, the GPIO6 status is checked and latched immediately. Please see Table 7 for the description of GPIO6 additional configurable function. When GPIO6 is not set as L2 operation mode select at factory, the LDO or LSW operation is set by L2\_MODE bit at factory.

**Table 7. GPIO6 Additional Configurable Function**

| GPIO6 Status | High | Low |
|--------------|------|-----|
| LDO2 Output  | VSET | LSW |

## STEP-DOWN DC/DC CONVERTERS

### General Description

The SGM260421 integrates four Buck converters. All Bucks are ACOT mode controlled. These Buck converters feature internal compensation, requiring only three small external components ( $C_{IN}$ ,  $C_{OUT}$ , and  $L$ ) for operation.

Each Buck converter has its own dedicated input pin and power ground pin. To ensure optimal performance, each converter requires a dedicated input capacitor placed strategically to minimize power routing loops. Although the Buck converters have separate input pins, all inputs must be tied to the same voltage potential.

The SGM260421 Buck regulators offer extensive configurability and can be easily adjusted via I<sup>2</sup>C, eliminating the need for PCB modifications when hardware requirements change. The following I<sup>2</sup>C controlled functions are available:

- Real-Time Monitoring of Power Good, Over-Voltage (OV), Under-Voltage and Current Limit
- Selective Fault Masking
- Dynamic Output Voltage Adjustment
- On/Off Control
- Soft-Start Ramp Configuration
- Power Save Mode
- Over-Current Thresholds Adjustment

### Operating Mode

Buck1/2/3/4 use adaptive constant on time (ACOT) control. By default, all Buck converters operate in fixed-frequency PWM mode under medium to heavy loads. At light loads, it automatically transitions to a proprietary power-saving mode that reduces conduction losses by preventing negative inductor current. All the Bucks can switch to FPWM mode, PSM mode or LPM mode through I<sup>2</sup>C interface.

Buck1 can be configured as a bypass switch for systems with a 3.3V bus. And Buck4 can be configured to LDO mode.

### Buck LPM

To optimize efficiency under extremely light loads, each regulator features a low-power mode (LPM). Enabled by setting the EN\_LPM bit to 1, LPM significantly reduces power loss in this condition. After entering SLEEP/DPSLP mode, the system automatically enters LPM mode. LPM only supports extremely light load applications. It is only recommended to use LPM mode in SSD applications.

### Enable/Disable Control

During normal operation, each Buck converter can be enabled or disabled via the I<sup>2</sup>C interface by writing to the Bx\_EN bit. Each Buck converter includes a load discharge function that rapidly pulls the output voltage to ground when the converter is disabled. The Bucks discharge resistor is adjustable via I<sup>2</sup>C.

### Soft-Start

Each Buck regulator feature built-in soft-start ramps to control the output voltage rise, reducing input inrush current and ensuring a smooth, monotonic startup regardless of load conditions. This mechanism is activated after the regulator is enabled and recovered from short-circuit or other fault. The soft-start duration can be adjusted via the Bx\_SS bit.

### Dynamic Voltage Scaling

Buck2 and Buck3 support dynamic voltage scaling (DVS). When the SGM260421 enters SLEEP or DPSLP modes, these Bucks (if kept active) can automatically switch their output voltage to the pre-configured DVS\_VSET level. The slew rate of this transition between VSET and DVS\_VSET is programmed via the I<sup>2</sup>C bits Bx\_DVS\_SET.

Separately, the output voltage of Buck1 and Buck4 can be updated dynamically through their I<sup>2</sup>C VSET registers, with the transition likewise being slew rate controlled.

### Over-Current and Short-Circuit Protection

Each Buck converter includes over-current and short-circuit protections. Over-current protection is implemented using cycle-by-cycle current limit. The valley current threshold are set by the Bx\_ILIM\_SET bits.

Buck regulate the maximum valley current of the low-side FET by preventing the high-side FET from turning on until the low-side FET current falls below the valley current limit.

If an output enters current limit, its voltage may drop below the UV threshold which shuts down all outputs and enter the OVUVFLT state. If  $V_{OUT}$  is short to GND, the current is likewise limited. This action typically induces an immediate UV condition, prompting the IC to enter the OVUVFLT state.

## STEP-DOWN DC/DC CONVERTERS (continued)

**Buck1 Bypass Switch**

Buck1 can be configured as a bypass switch for systems with a 3.3V bus. In bypass mode, the Buck1 PMOS functions as a switch, while the NMOS remains disabled. The bypass switch activates the 3.3V rail with the programmed delay.

In bypass mode, neither a short to ground nor an overload at VOUT will trigger an under-voltage (UV) fault. This is because the switch shuts down rapidly to protect the PMIC, leaving insufficient time for the UV condition to be registered.

Note that in this mode, the over-voltage protection (OV) threshold is set to 3.8V with a 20 $\mu$ s deglitch time. If OV occurs, SGM260421 shuts down all outputs, enters OUVFLT state, retries after 200ms.

**Buck4 LDO Operation**

Buck4 integrates a 400mA LDO. The operating mode (Buck or LDO) is selectable via GPIO4 or B4\_MODE = 1 at factory (when GPIO4 is not set as B4/L1 operation mode and voltage select). When configured for LDO operation by floating GPIO4, the output voltage is set by the VSET2 register. When configured for LDO operation by B4\_MODE = 1 (fixed at factory, change this bit via I<sup>2</sup>C has no reaction), the output voltage is set by the VSET0 register. The external inductor must be removed in LDO mode operation.

**Input Capacitor Selection**

Each regulator requires a high quality, low-ESR, ceramic input capacitor. 10 $\mu$ F capacitors are typically suitable, but this value can be increased without limit. Smaller capacitor values can be used with lighter output loads. The input voltage ripple is calculated using the following Equation:

$$V_{\text{RIPPLE}} = I_{\text{OUT}} \times \frac{\frac{V_{\text{OUT}}}{V_{\text{IN}}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)}{f_{\text{SW}} \times C_{\text{IN}}}$$

Consider the capacitor's DC bias effects and maximum ripple current rating when using sizes smaller than 0805, as DC bias significantly impacts actual capacitance. The input capacitor is typically X5R, X7R,

or a similar dielectric. Proper placement is critical. Each input capacitor of Bucks must be positioned as close to the IC as possible. The traces from V<sub>IN\_Bx</sub> to the capacitor and from the capacitor to PGND<sub>x</sub> should be as short and wide as possible.

**Inductor Selection**

The Buck converters use ACOT control with a proprietary internal compensation scheme that simplifies external component selection and optimizes transient performance across the full operating range. The SGM260421 is designed for 0.47 $\mu$ H inductors. Select an inductor with low DC resistance and a DC rating at least 30% higher than the maximum output current to prevent saturation. The inductor ripple current is calculated using the following equation:

$$\Delta I_L = I_{\text{OUT}} \times \frac{\left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times V_{\text{OUT}}}{f_{\text{SW}} \times L}$$

Where V<sub>OUT</sub> is the output voltage, V<sub>IN</sub> is the input voltage, f<sub>SW</sub> is the switching frequency, and L is the inductor value.

**Output Capacitor Selection**

The SGM260421 is optimized for compact, low-ESR ceramic output capacitors. Ensure the output ripple voltage remains below 1% of the output voltage. The equation below defines the relationship between output voltage ripple and output capacitance.

$$V_{\text{RIPPLE}} = \frac{\Delta I_L}{8 \times f_{\text{SW}} \times C_{\text{OUT}}}$$

Where  $\Delta I_L$  is the inductor ripple current, f<sub>SW</sub> is the switching frequency, and C<sub>OUT</sub> is the effective output capacitance, considering DC bias effects. When using capacitors smaller than 0805, ensure they meet the required ripple current rating and account for capacitance reduction due to DC bias. The actual capacitance can vary significantly based on voltage conditions. Typically, X5R, X7R, or similar dielectric capacitors are recommended for the output stage.

## LDO CONVERTERS

### General Description

The SGM260421 integrates two 400mA low dropout (LDO) regulators, optimized for minimal dropout voltage. They can also operate in load switch mode. Each LDO requires only two small external capacitors ( $C_{IN}$  and  $C_{OUT}$ ) for proper function. The default output voltages are factory-set but can be adjusted via the I<sup>2</sup>C interface for advanced power management needs.

LDO1 is powered through its own dedicated pin, VIN\_LDO1, allowing it to operate from an input voltage source independent of those for the Buck converters and LDO2. In contrast, LDO2 is powered directly from the AVIN pin.

### Enable/Disable Control

During normal operation, each LDO can be enabled or disabled through the I<sup>2</sup>C interface by setting the Lx\_EN bit or through GPIO. Each LDO includes a load discharge function that rapidly pulls the output voltage to ground when the LDO is disabled.

### Soft-Start

Each LDO includes a soft-start circuit that controls the output voltage ramp, reducing input inrush current and ensuring monotonic start-up. This function is active whenever the LDO is enabled and after recovery from a short-circuit or other fault conditions. The soft-start time of each LDO is adjustable via I<sup>2</sup>C.

### Over-Current and Short-Circuit Protections

Each LDO features over-current detection and short-circuit protection. Upon reaching the current limit, the IC keeps the over-current threshold level until the over-current condition is removed.

During overload or short-circuit conditions, the LDO limits the output current, causing the output voltage to drop. Once current limiting causes the output voltage to drop and trigger an under-voltage (UV) condition, the IC shuts down all power supplies and enters the OVUVFLT state. Then it will automatically restart after a 200ms delay, following the default power-up sequence.

### Low-Power Mode

LDO1 and LDO2 feature a low-power mode (LPM) that minimizes their standby current. Note that in LPM, certain protections such as over-voltage (OV) and current limit (ILIM) are disabled. After entering SLEEP/DPSLP mode, the system automatically enters LPM mode. LPM only supports extremely light load applications. It is only recommended to use LPM mode in SSD applications.

### Input Capacitor Selection

Each LDO requires a high-quality, low-ESR ceramic capacitor. A 1 $\mu$ F capacitor is typically sufficient, but a larger value can be used without restriction. The input capacitor should have an X5R, X7R, or similar dielectric.

### Output Capacitor Selection

Each LDO requires a high-quality, low-ESR ceramic output capacitor, a 1 $\mu$ F is a typical choice. The capacitor should have an X5R, X7R, or similar dielectric.

### Load Switch Mode

LDO1 and LDO2 can be configured as a PMOS load switch (LSW mode). In this mode, the LDO1 operates with an input voltage ranging from 1.62V to AVIN. The load switch current limit (LSW) is set to either 0.4A or 0.5A via the LDOx\_ILIM\_SET I<sup>2</sup>C bit.

Over-voltage protection in LSW mode has a 3.8V threshold with 20 $\mu$ s deglitch. If an OV (if Lx\_OVP\_EN = 1) or UV condition is detected, the SGM260421 shuts down all outputs, enters the OVUVFLT state, and initiates an auto-retry after 200ms.

## I<sup>2</sup>C COMPATIBLE INTERFACE

### I<sup>2</sup>C Serial Interface and Data Communication

Standard I<sup>2</sup>C interface is used to program SGM260421 parameters and get status reports. I<sup>2</sup>C is the well-known 2-wire serial communication interface that can connect one (or more) master device(s) to some slave devices for two-way communication. The bus lines are named serial data (SDA) and serial clock (SCL). The device that initiates a data transfer is a master. A master generates the SCL signal. Slave devices have unique addresses to identify. A master is typically a micro controller or a digital signal processor.

The SGM260421 operates as a slave device that address (adjustable) is 0x25. It has fifty 8-bit registers, numbered from 0x00 to 0x52.

### Physical Layer

The standard I<sup>2</sup>C interface of SGM260421 supports standard mode, fast mode, fast mode plus and high-speed mode communication speeds. The frequency of standard mode is up to 100kbit/s, while the high-speed mode is up to 3.4Mbit/s. Bus lines are pulled high by weak current source or pull-up resistors and in logic high state with no clocking when the bus is free. The SDA pin is open-drain.

### I<sup>2</sup>C Data Communication

#### START and STOP Conditions

A transaction is started by taking control of the bus by master if the bus is free. The transaction is terminated by releasing the bus when the data transfer job is done as shown Figure 6. All transactions begin by master which applies a START condition on the bus lines to take over the bus and exchange data. At the end, the master terminates the transaction by applying one (or more) STOP condition. START condition is defined when SCL is high and a high to low transition on the SDA is generated by master. Similarly, a STOP is defined when SCL is high and SDA goes from low to high. START and STOP are always generated by a master. After a START and before a STOP, the bus is considered busy.

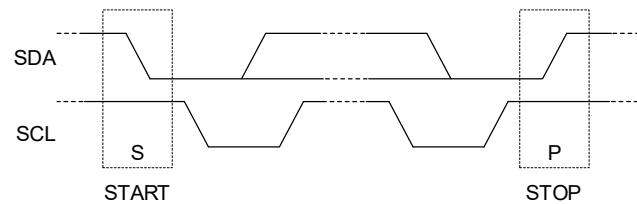



Figure 6. I<sup>2</sup>C Bus in START and STOP Conditions

#### Data Bit Transmission and Validity

The data bit (high or low) must remain stable during clock high period. The state of SDA can only change when SCL is low. For each data bit transmission, one clock pulse is generated by master. Bit transfer in I<sup>2</sup>C is shown in Figure 7.

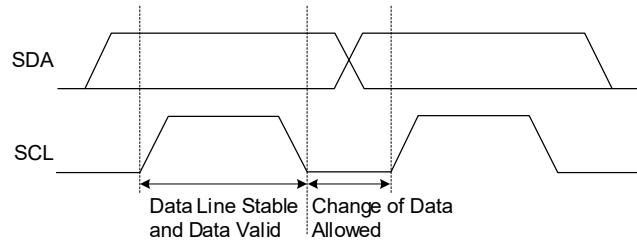



Figure 7. I<sup>2</sup>C Bus Bit Transfer

#### Byte Format

Data is transmitted in 8-bit packets (one byte at a time). The number of bytes in one transaction is not limited. In each packet, the 8 bits are sent successively with the Most Significant Bit (MSB) first. An acknowledge (or not-acknowledge) bit must come after the 8 data bits. This bit informs the transmitter whether the receiver is ready to proceed for the next byte or not. If the slave is busy and cannot transfer another byte of data, it can hold the SCL line low and keep the master in a wait state (called clock stretching). When the slave is ready for another byte of data, it releases the clock line and data transfer can continue with clocks generated by master. Figure 8 shows the byte transfer process with I<sup>2</sup>C interface.

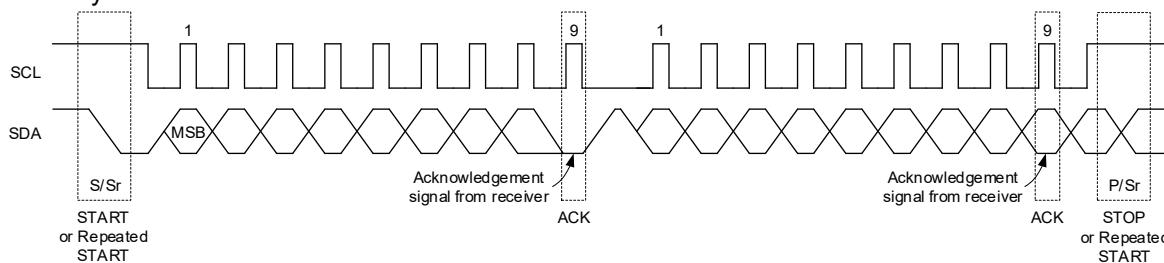



Figure 8. Byte Transfer Process

## I<sup>2</sup>C COMPATIBLE INTERFACE (continued)

### Acknowledge (ACK) and Not Acknowledge (NCK)

After transmission of each byte by transmitter, an acknowledge bit is replied by the receiver as the ninth bit. With the acknowledge bit, the receiver informs the transmitter that the byte is received, and another byte is expected or can be sent (ACK) or it is not expected (NCK = not ACK). Clock (SCL) is always generated by master, including the acknowledge clock pulse, no matter who is acting as transmitter or receiver. SDA line is released for receiver control during the acknowledge clock pulse. And the receiver can pull the SDA line low as ACK (reply a 0 bit) or let it be high as NCK during the SCL high pulse. After that, the master can either apply a STOP (P) condition to end the transaction or send a new START (S) condition to start a new transfer (called repeated start). For example, when master wants to read a register in slave, one start is needed to send the slave address and register address, and then, without a STOP condition, another start is sent by master to initiate the receiving transaction from slave. Master then sends the STOP condition and releases the bus.

### Data Direction Bit and Addressing Slaves

The first byte sent by master after the START is always the target slave address (7 bits) and an eighth data-direction bit (R/W). R/W bit is 0 for a WRITE

transaction and 1 for READ (when master is asking for data). Data direction is the same for all next bytes of the transaction. To reverse it, a new START or repeated START condition must be sent by master (STOP will end the transaction). Usually the second byte is a WRITE sending the register address that is supposed to be accessed in the next byte(s). The data transfer transaction is shown in Figure 9.

**WRITE:** If the master wants to write in the register, the third byte can be written directly as shown in Figure 10 for a single write data transfer. After receiving the ACK, master may issue a STOP condition to end the transaction or send the next register data, which will be written to the next address in a slave as multi-write. A STOP is needed after sending the last data.

**READ:** If the master wants to read a single register (Figure 11), it sends a new START condition along with device address with R/W bit = 1. After ACK is received, master reads the SDA line to receive the content of the register. Master replies with NCK to inform slave that no more data is needed (single read) or it can send an ACK to request for sending the next register content (multi-read). This can continue until an NCK is sent by master. A STOP must be sent by master in any case to end the transaction.

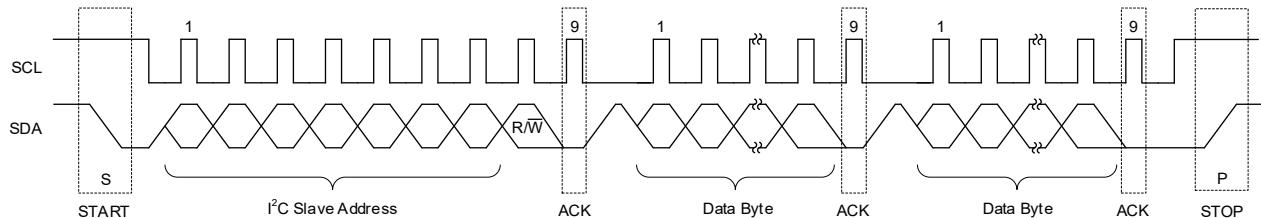
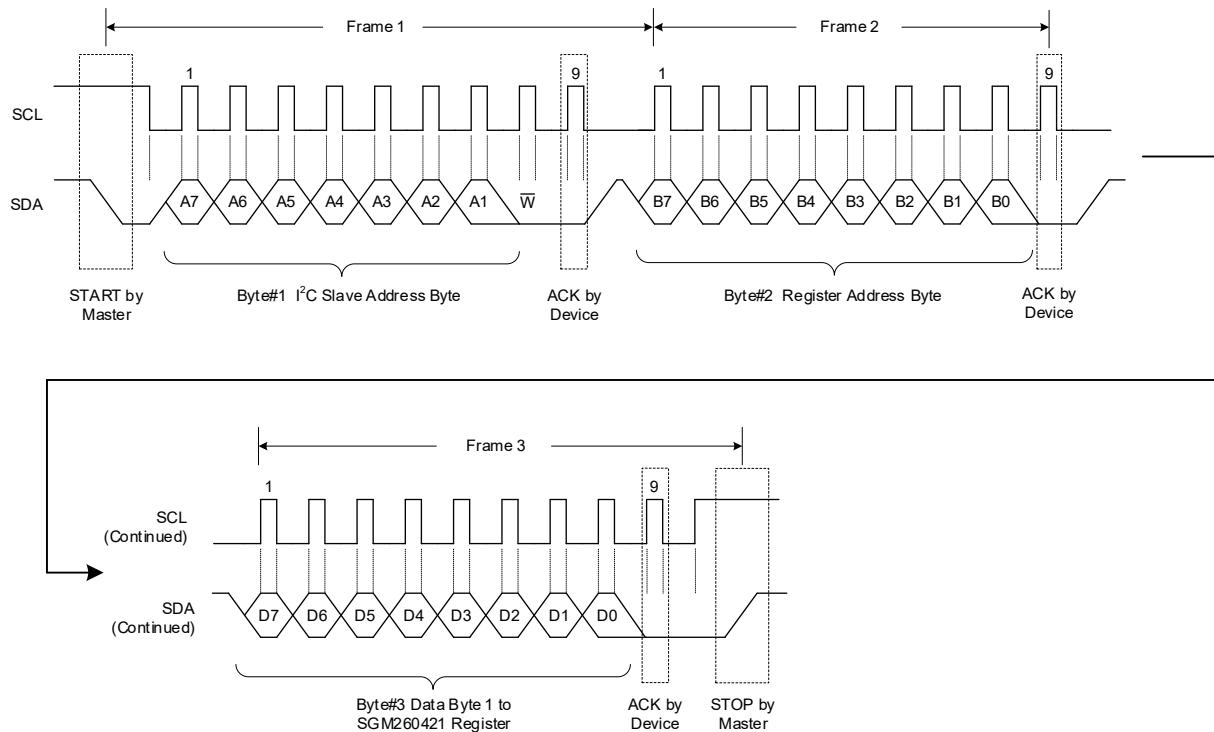
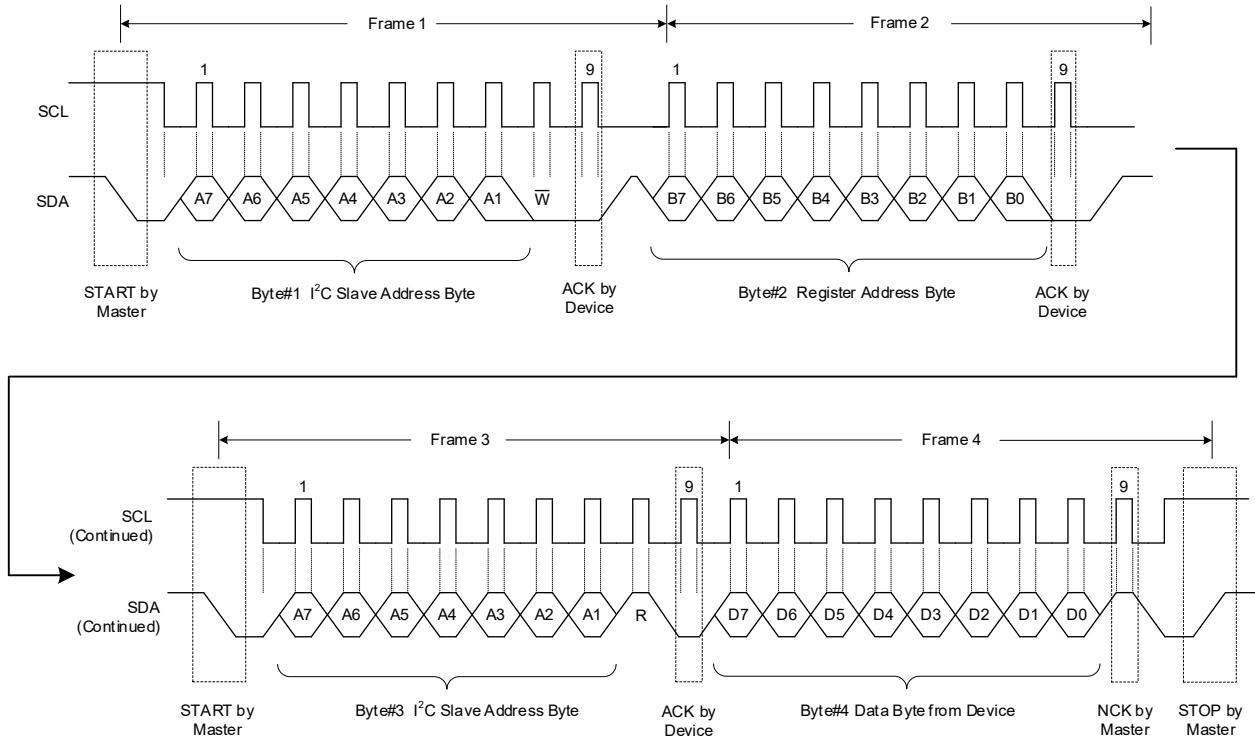





Figure 9. Data Transfer Transaction

**I<sup>2</sup>C COMPATIBLE INTERFACE (continued)****Figure 10. A Single Write Transaction****Figure 11. A Single Read Transaction**

**I<sup>2</sup>C COMPATIBLE INTERFACE (continued)****Data Transactions with Multi-Read or Multi-Write**

Multi-read and multi-write are supported by SGM260421 for REG0x00 through REG0x52 registers. In the multi-write, every new data byte sent by master is written to the next register of the device. A STOP is sent whenever master is done with writing into device registers.

In a multi-read transaction, after receiving the first register data (its address is already written to the slave), the master replies with an ACK to ask the slave to send the next register data. This can continue as much as it is needed by master. Master sends back an NCK after the last received byte and issues a STOP condition.

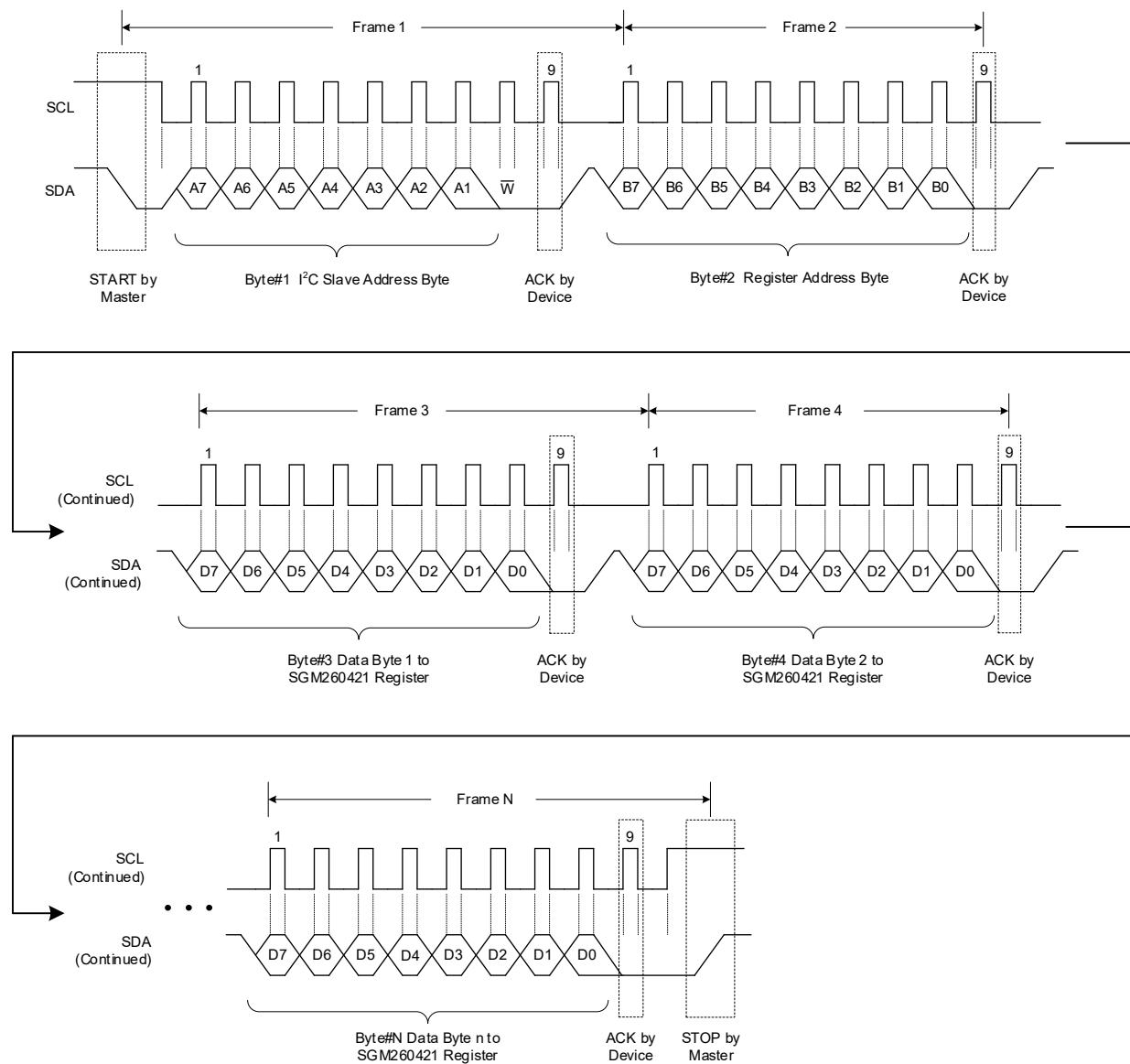
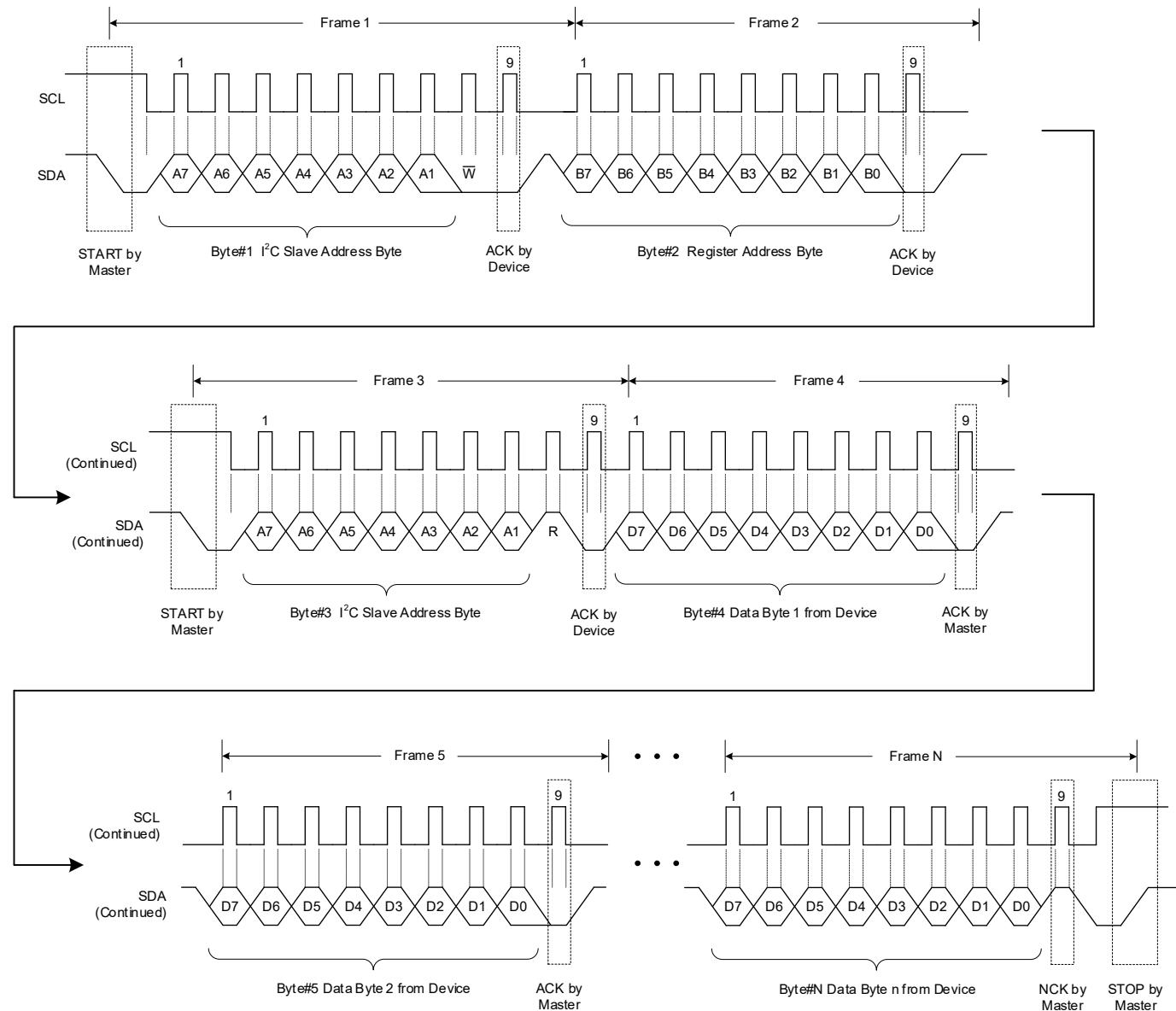




Figure 12. A Multi-Write Transaction

**I<sup>2</sup>C COMPATIBLE INTERFACE (continued)****Figure 13. A Multi-Read Transaction**

**CMI OPTIONS**

This section provides the basic default configuration settings for each available SGM260421 CMI option. IC functionality in this section supersedes functionality in the main datasheet. The user is required to fully test all required functionality to ensure the CMI fully meets their requirements.

**CMI 001: SGM260421-001**

The following tables describe the SGM260421-001 IC default settings.

**Table 8. Voltage and Currents**

| Rail  | Output Voltage (V) |       |          | SLEEP Mode | DPSLP Mode | Current Limit (A) | f <sub>sw</sub> (MHz) |
|-------|--------------------|-------|----------|------------|------------|-------------------|-----------------------|
| Buck1 | GPIO2 Status       | High  | LSW mode | On         | Off        | 5                 | 2                     |
|       |                    | Float | 2.5      |            |            |                   |                       |
|       |                    | Low   | 2.5      |            |            |                   |                       |
| Buck2 | GPIO2 Status       | High  | 1.2      | On         | Off        | 4                 | 2                     |
|       |                    | Float | 1.2      |            |            |                   |                       |
|       |                    | Low   | 1.2      |            |            |                   |                       |
| Buck3 | GPIO1 Status       | High  | 0.8      | On         | DVS 0.7V   | 5                 | 2                     |
|       |                    | Float | 0.75     |            | DVS 0.65V  |                   |                       |
|       |                    | Low   | 0.75     |            | DVS 0.65V  |                   |                       |
| Buck4 | GPIO4 Status       | High  | 0.9      | Off        | On         | 3                 | 2                     |
|       |                    | Float | 0.9      |            |            |                   |                       |
|       |                    | Low   | 0.9      |            |            |                   |                       |
| LDO1  | GPIO4 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Float | LSW mode |            |            |                   |                       |
|       |                    | Low   | LSW mode |            |            |                   |                       |
| LDO2  | GPIO6 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Low   | LSW mode |            |            |                   |                       |

**Table 9. Startup and Sequencing**

| Rail  | On Delay (ms) | Extra Delay (ms) |       |   | Wake-Up Delay (ms) | Soft-Start (μs) | Shutdown Delay (ms) |  |
|-------|---------------|------------------|-------|---|--------------------|-----------------|---------------------|--|
| Buck1 | 2             | GPIO3 Status     | High  | 1 | 2                  | 175             | 0                   |  |
|       |               |                  | Float | 0 | 1                  |                 |                     |  |
|       |               |                  | Low   | 0 | 1                  |                 |                     |  |
| Buck2 | 2             |                  | High  | 0 | 1                  | 175             | 0                   |  |
|       |               |                  | Float | 1 | 2                  |                 |                     |  |
|       |               |                  | Low   | 1 | 2                  |                 |                     |  |
| Buck3 | 1             |                  | High  | 0 | 0                  | 175             | 1                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |
| Buck4 | 1.5           |                  | High  | 0 | 0                  | 55              | 0                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |
| LDO1  | 0.5           |                  | High  | 0 | 0                  | 100             | 1                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |
| LDO2  | 0.5           |                  | High  | 0 | 0                  | 100             | 1                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |

## CMI OPTIONS (continued)

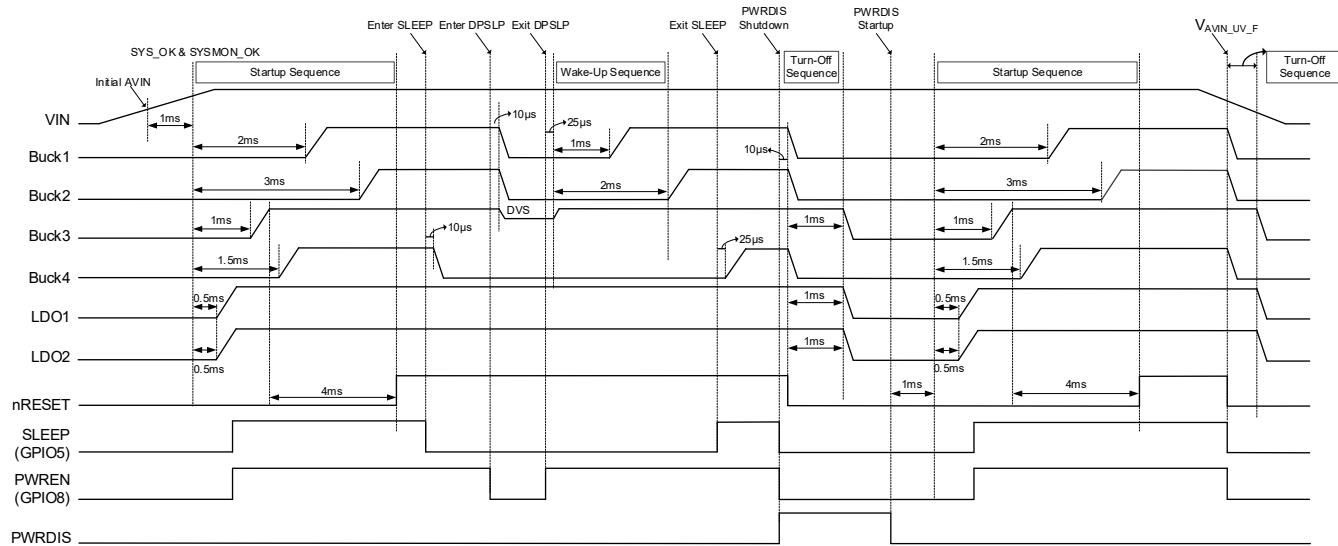



Figure 14. CMI 001 Sequence at GPIO3 = Float

**I<sup>2</sup>C Address**

The SGM260421-001 7-bit I<sup>2</sup>C address is 0x25. Use address 0x4A when writing and 0x4B when reading.

**GPIO1 - B3 Voltage Select**

Refer to GPIO configuration section.

**GPIO2 - B1/B2 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO3 - Extra Power-Up Delay Time and Wake-Up Delay Select**

Refer to GPIO configuration section.

**GPIO4 - B4/L1 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO5 - SLEEP**

When SLEEP is H, the IC is in active mode. When SLEEP is L, the IC is in SLEEP mode.

**GPIO6 - L2 Operation Mode Select**

Refer to GPIO configuration section.

**GPIO7 - No Function****GPIO8 - PWREN**

When PWREN is H, the IC is in active mode. When PWREN is L, the IC is in DPSLP mode.

**CMI OPTIONS (continued)****CMI 002: SGM260421-002**

The following tables describe the SGM260421-002 IC default settings.

**Table 10. Voltage and Currents**

| Rail  | Output Voltage (V) |       |          | SLEEP Mode | DPSLP Mode | Current Limit (A) | f <sub>sw</sub> (MHz) |
|-------|--------------------|-------|----------|------------|------------|-------------------|-----------------------|
| Buck1 | GPIO2 Status       | High  | LSW mode | Off        | Off        | 5                 | 2                     |
|       |                    | Float | 2.5      |            |            |                   |                       |
|       |                    | Low   | 2.5      |            |            |                   |                       |
| Buck2 | GPIO2 Status       | High  | 0.91     | On         | DVS 0.68V  | 3                 | 2                     |
|       |                    | Float | 0.91     |            |            |                   |                       |
|       |                    | Low   | 1.2      |            |            |                   |                       |
| Buck3 | GPIO3 Status       | High  | 0.76     | On         | DVS 0.68V  | 5                 | 2                     |
|       |                    | Float | 0.76     |            |            |                   |                       |
|       |                    | Low   | 0.76     |            |            |                   |                       |
| Buck4 | GPIO4 Status       | High  | 1.1      | Off        | Off        | 3                 | 2                     |
|       |                    | Float | 1.2      |            |            |                   |                       |
|       |                    | Low   | 1.2      |            |            |                   |                       |
| LDO1  | GPIO4 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Float | 1.8      |            |            |                   |                       |
|       |                    | Low   | 2.5      |            |            |                   |                       |
| LDO2  | GPIO6 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Low   | LSW mode |            |            |                   |                       |

**Table 11. Startup and Sequencing**

| Rail  | On Delay (ms) | Extra Delay (ms) |       |      | Wake-Up Delay (ms) | Soft-Start (μs) | Shutdown Delay (ms) |
|-------|---------------|------------------|-------|------|--------------------|-----------------|---------------------|
| Buck1 | 3             | GPIO3 Status     | High  | 0.25 | 0.75               | 175             | 0                   |
|       |               |                  | Float | 0.25 | 0                  |                 |                     |
|       |               |                  | Low   | 0.25 | 2                  |                 |                     |
| Buck2 | 0.5           | GPIO3 Status     | High  | 0.25 | 0                  | 175             | 0                   |
|       |               |                  | Float | 0.25 |                    |                 |                     |
|       |               |                  | Low   | 0.25 |                    |                 |                     |
| Buck3 | 0             | GPIO3 Status     | High  | 0.75 | 0                  | 175             | 0                   |
|       |               |                  | Float | 0.75 |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |
| Buck4 | 1.5           | GPIO3 Status     | High  | 1.5  | 0.5                | 175             | 0                   |
|       |               |                  | Float | 2.25 |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |
| LDO1  | 2             | GPIO3 Status     | High  | 0    | 0                  | 100             | 0                   |
|       |               |                  | Float | 0    |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |
| LDO2  | 2             | GPIO3 Status     | High  | 0    | 0                  | 100             | 0                   |
|       |               |                  | Float | 0    |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |

## CMI OPTIONS (continued)

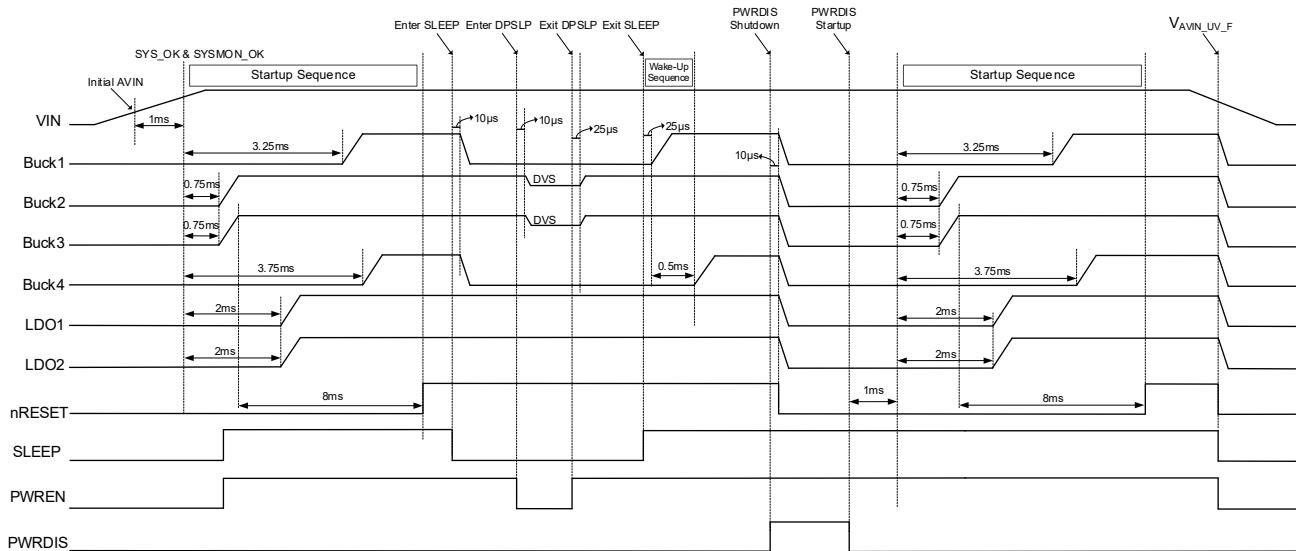



Figure 15. CMI 002 Sequence at GPIO3 = Float

**I<sup>2</sup>C Address**

The SGM260421-002 7-bit I<sup>2</sup>C address is 0x25. Use address 0x4A when writing and 0x4B when reading.

**GPIO1 - nRESET**

GPIO1 is configured as an open-drain nRESET. nRESET goes high 8ms after Buck3 goes into regulation.

**GPIO2 - B1/B2 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO3 - B3 Voltage, Extra Power-Up Delay Time and Wake-Up Delay Select**

Refer to GPIO configuration section.

**GPIO4 - B4/L1 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO5 - No Function****GPIO6 - L2 Operation Mode Select**

Refer to GPIO configuration section.

**GPIO7 - No Function****GPIO8 - No Function**

**CMI OPTIONS (continued)****CMI 003: SGM260421-003**

The following tables describe the SGM260421-003 IC default settings.

**Table 12. Voltage and Currents**

| Rail  | Output Voltage (V) |       |          | SLEEP Mode | DPSLP Mode | Current Limit (A) | f <sub>sw</sub> (MHz) |
|-------|--------------------|-------|----------|------------|------------|-------------------|-----------------------|
| Buck1 | GPIO2 Status       | High  | LSW mode | On         | Off        | 5                 | 2                     |
|       |                    | Float | 2.5      |            |            |                   |                       |
|       |                    | Low   | 2.5      |            |            |                   |                       |
| Buck2 | GPIO2 Status       | High  | 1.2      | On         | Off        | 4                 | 2                     |
|       |                    | Float | 1.2      |            |            |                   |                       |
|       |                    | Low   | 1.2      |            |            |                   |                       |
| Buck3 | GPIO1 Status       | High  | 0.8      | On         | DVS 0.7V   | 5                 | 2                     |
|       |                    | Float | 0.75     |            | DVS 0.65V  |                   |                       |
|       |                    | Low   | 0.75     |            | DVS 0.65V  |                   |                       |
| Buck4 | GPIO4 Status       | High  | 0.9      | Off        | Off        | 3                 | 2                     |
|       |                    | Float | 0.9      |            |            |                   |                       |
|       |                    | Low   | 0.9      |            |            |                   |                       |
| LDO1  | GPIO4 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Float | LSW mode |            |            |                   |                       |
|       |                    | Low   | LSW mode |            |            |                   |                       |
| LDO2  | GPIO6 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Low   | LSW mode |            |            |                   |                       |

**Table 13. Startup and Sequencing**

| Rail  | On Delay (ms) | Extra Delay (ms) |       |   | Wake-Up Delay (ms) | Soft-Start (μs) | Shutdown Delay (ms) |  |
|-------|---------------|------------------|-------|---|--------------------|-----------------|---------------------|--|
| Buck1 | 2             | GPIO3 Status     | High  | 1 | 2                  | 175             | 0                   |  |
|       |               |                  | Float | 0 | 1                  |                 |                     |  |
|       |               |                  | Low   | 0 | 1                  |                 |                     |  |
| Buck2 | 2             |                  | High  | 0 | 1                  | 175             | 0                   |  |
|       |               |                  | Float | 1 | 2                  |                 |                     |  |
|       |               |                  | Low   | 1 | 2                  |                 |                     |  |
| Buck3 | 1             |                  | High  | 0 | 0                  | 175             | 1                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |
| Buck4 | 1.5           |                  | High  | 0 | 0                  | 55              | 0                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |
| LDO1  | 0.5           |                  | High  | 0 | 0                  | 100             | 1                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |
| LDO2  | 0.5           |                  | High  | 0 | 0                  | 100             | 1                   |  |
|       |               |                  | Float | 0 |                    |                 |                     |  |
|       |               |                  | Low   | 0 |                    |                 |                     |  |

## CMI OPTIONS (continued)

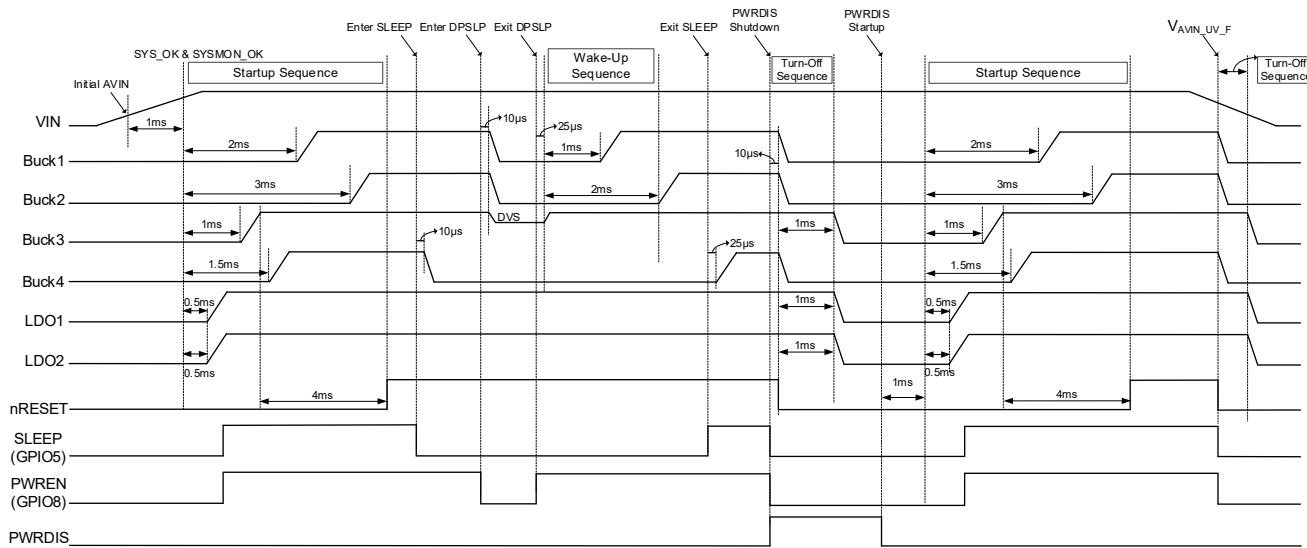



Figure 16. CMI 003 Sequence at GPIO3 = Float

**I<sup>2</sup>C Address**

The SGM260421-003 7-bit I<sup>2</sup>C address is 0x25. Use address 0x4A when writing and 0x4B when reading.

**GPIO1 - B3 Voltage Select**

Refer to GPIO configuration section.

**GPIO2 - B1/B2 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO3 - Extra Power-Up Delay Time and Wake-Up Delay Select**

Refer to GPIO configuration section.

**GPIO4 - B4/L1 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO5 - SLEEP**

When SLEEP is H, the IC is in Active Mode. When SLEEP is L, the IC is in SLEEP mode.

**GPIO6 - L2 Operation Mode Select**

Refer to GPIO configuration section.

**GPIO7 - No Function****GPIO8 - PWREN**

When PWREN is H, the IC is in Active Mode. When PWREN is L, the IC is in DPSLP mode.

**CMI OPTIONS (continued)****CMI 004: SGM260421-004**

The following tables describe the SGM260421-004 IC default settings.

**Table 14. Voltage and Currents**

| Rail  | Output Voltage (V) |       |          | SLEEP Mode | DPSLP Mode | Current Limit (A) | f <sub>sw</sub> (MHz) |
|-------|--------------------|-------|----------|------------|------------|-------------------|-----------------------|
| Buck1 | GPIO2 Status       | High  | LSW mode | On         | On         | 5                 | 2                     |
|       |                    | Float | 2.5      |            |            |                   |                       |
|       |                    | Low   | 2.5      |            |            |                   |                       |
| Buck2 | GPIO2 Status       | High  | 0.91     | On         | On         | 3                 | 2                     |
|       |                    | Float | 0.91     |            |            |                   |                       |
|       |                    | Low   | 0.91     |            |            |                   |                       |
| Buck3 | GPIO3 Status       | High  | 0.78     | On         | On         | 5                 | 2                     |
|       |                    | Float | 0.78     |            |            |                   |                       |
|       |                    | Low   | 0.78     |            |            |                   |                       |
| Buck4 | GPIO4 Status       | High  | 1.2      | On         | On         | 3                 | 2                     |
|       |                    | Float | 1.2      |            |            |                   |                       |
|       |                    | Low   | 1.2      |            |            |                   |                       |
| LDO1  | GPIO4 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Float | 1.8      |            |            |                   |                       |
|       |                    | Low   | LSW mode |            |            |                   |                       |
| LDO2  | GPIO6 Status       | High  | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | Low   | LSW mode |            |            |                   |                       |

**Table 15. Startup and Sequencing**

| Rail  | On Delay (ms) | Extra Delay (ms) |       |      | Wake-Up Delay (ms) | Soft-Start (μs) | Shutdown Delay (ms) |
|-------|---------------|------------------|-------|------|--------------------|-----------------|---------------------|
| Buck1 | 3             | GPIO3 Status     | High  | 0.25 | 0.75               | 175             | 0                   |
|       |               |                  | Float | 0    | 0                  |                 |                     |
|       |               |                  | Low   | 0.25 | 2                  |                 |                     |
| Buck2 | 0.5           | GPIO3 Status     | High  | 0.25 | 0                  | 175             | 0                   |
|       |               |                  | Float | 0    | 0                  |                 |                     |
|       |               |                  | Low   | 0.25 | 0                  |                 |                     |
| Buck3 | 0             | GPIO3 Status     | High  | 0.75 | 0                  | 175             | 0                   |
|       |               |                  | Float | 0.5  |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |
| Buck4 | 1.5           | GPIO3 Status     | High  | 1.5  | 0.5                | 175             | 0                   |
|       |               |                  | Float | 2    |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |
| LDO1  | 2             | GPIO3 Status     | High  | 0    | 0                  | 100             | 0                   |
|       |               |                  | Float | 0    |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |
| LDO2  | 2             | GPIO3 Status     | High  | 0    | 0                  | 100             | 0                   |
|       |               |                  | Float | 0    |                    |                 |                     |
|       |               |                  | Low   | 0    |                    |                 |                     |

## CMI OPTIONS (continued)

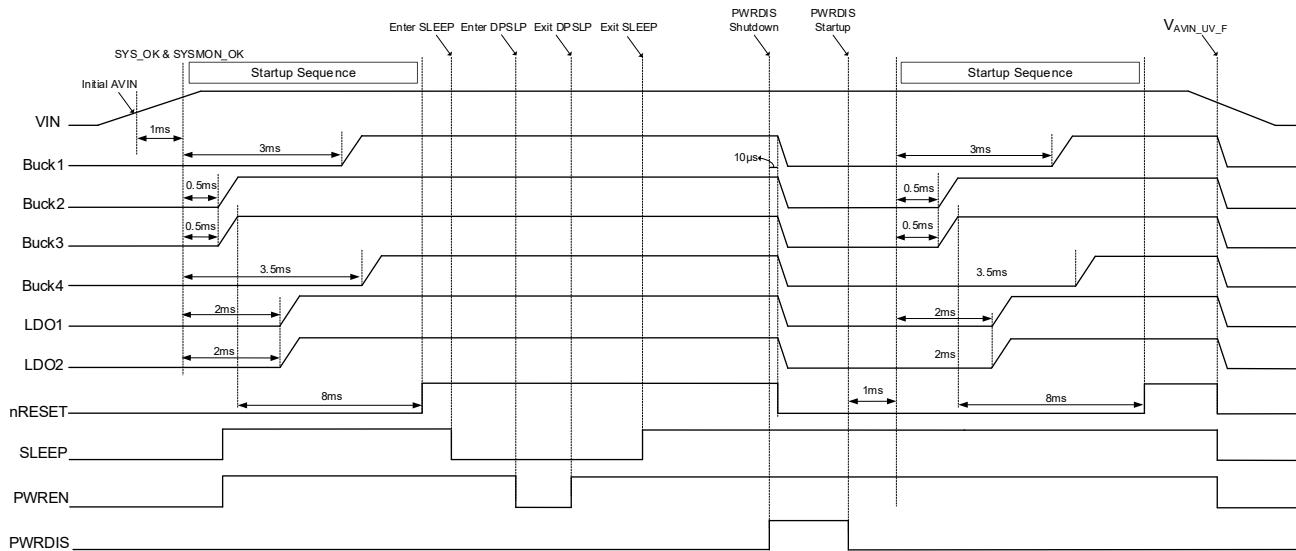



Figure 17. CMI 004 Sequence at GPIO3 = Float

**I<sup>2</sup>C Address**

The SGM260421-004 7-bit I<sup>2</sup>C address is 0x25. Use address 0x4A when writing and 0x4B when reading.

**GPIO1 - nRESET**

GPIO1 is configured as an open-drain nRESET. nRESET goes high 8ms after Buck3 goes into regulation.

**GPIO2 - B1/B2 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO3 - B3 Voltage, Extra Power-Up Delay Time and Wake-Up Delay Select**

Refer to GPIO configuration section.

**GPIO4 - B4/L1 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO5 - No Function****GPIO6 - L2 Operation Mode Select**

Refer to GPIO configuration section.

**GPIO7 - No Function****GPIO8 - No Function**

**CMI OPTIONS (continued)****CMI 006: SGM260421-006**

The following tables describe the SGM260421-006 IC default settings.

**Table 16. Voltage and Currents**

| Rail  | Output Voltage (V) |       |          | SLEEP Mode | DPSLP Mode | Current Limit (A) | f <sub>sw</sub> (MHz) |
|-------|--------------------|-------|----------|------------|------------|-------------------|-----------------------|
| Buck1 | GPIO2 Status       | High  | LSW Mode | On         | On         | 5                 | 2                     |
|       |                    | Float | 2.5      |            |            |                   |                       |
|       |                    | Low   | 2.9      |            |            |                   |                       |
| Buck2 | GPIO2 Status       | High  | 1.2      | On         | On         | 4                 | 2                     |
|       |                    | Float | 1.2      |            |            |                   |                       |
|       |                    | Low   | 1.2      |            |            |                   |                       |
| Buck3 | GPIO3 Status       | High  | 0.75     | On         | On         | 5                 | 2                     |
|       |                    | Float | 0.75     |            |            |                   |                       |
|       |                    | Low   | 0.75     |            |            |                   |                       |
| Buck4 | N/A                | N/A   | 0.9      | On         | On         | 3                 | 2                     |
|       |                    | N/A   |          |            |            |                   |                       |
|       |                    | N/A   |          |            |            |                   |                       |
| LDO1  | N/A                | N/A   | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | N/A   |          |            |            |                   |                       |
|       |                    | N/A   |          |            |            |                   |                       |
| LDO2  | N/A                | N/A   | 1.8      | On         | On         | 0.5               | N/A                   |
|       |                    | N/A   |          |            |            |                   |                       |

**Table 17. Startup and Sequencing**

| Rail  | On Delay (ms) | Extra Delay (ms) |       |     | Wake-Up Delay (ms) | Soft-Start (μs) | Shutdown Delay (ms) |
|-------|---------------|------------------|-------|-----|--------------------|-----------------|---------------------|
| Buck1 | 2.5           | GPIO3 Status     | High  | 1   | 0                  | 175             | 0                   |
|       |               |                  | Float | 0   | 0                  |                 |                     |
|       |               |                  | Low   | 0.5 | 0                  |                 |                     |
| Buck2 | 3             | GPIO3 Status     | High  | 0   | 0                  | 175             | 0                   |
|       |               |                  | Float | 0   | 0                  |                 |                     |
|       |               |                  | Low   | 0   | 0                  |                 |                     |
| Buck3 | 0.5           | GPIO3 Status     | High  | 0   | 0                  | 175             | 1                   |
|       |               |                  | Float | 0   |                    |                 |                     |
|       |               |                  | Low   | 0   |                    |                 |                     |
| Buck4 | 2             | GPIO3 Status     | High  | 0   | 0                  | 175             | 0                   |
|       |               |                  | Float | 0   |                    |                 |                     |
|       |               |                  | Low   | 0   |                    |                 |                     |
| LDO1  | 1             | GPIO3 Status     | High  | 0   | 0                  | 100             | 1                   |
|       |               |                  | Float | 0   |                    |                 |                     |
|       |               |                  | Low   | 0   |                    |                 |                     |
| LDO2  | 1.5           | GPIO3 Status     | High  | 0   | 0                  | 100             | 1                   |
|       |               |                  | Float | 0   |                    |                 |                     |
|       |               |                  | Low   | 0   |                    |                 |                     |

## CMI OPTIONS (continued)

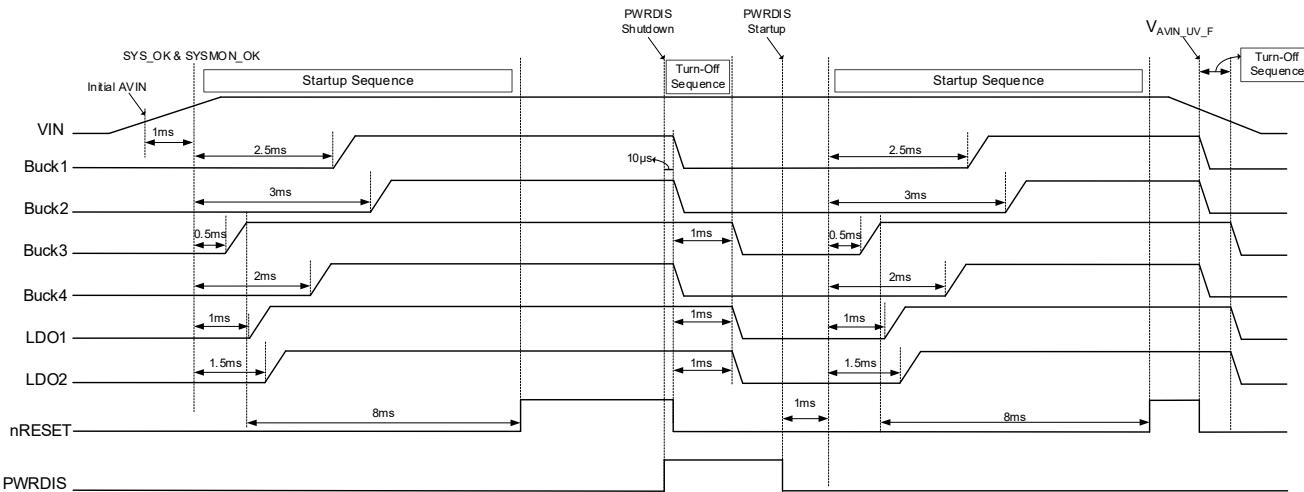



Figure 18. CMI 006 Sequence at GPIO3 = Float, GPIO8 = High

**I<sup>2</sup>C Address**

The SGM260421-006 7-bit I<sup>2</sup>C address is 0x25. Use address 0x4A when writing and 0x4B when reading.

**GPIO1 - nRESET**

GPIO1 is configured as an open-drain nRESET. nRESET goes high 8ms after Buck3 goes into regulation.

**GPIO2 - B1/B2 Operation Mode and Voltage Select**

Refer to GPIO configuration section.

**GPIO3 - B3 Voltage, Extra Power-Up Delay Time and Wake-Up Delay Select**

Refer to GPIO configuration section.

**GPIO4 - No Function****GPIO5 - I<sup>2</sup>C Controlled Output**

Refer to GPIO configuration section.

**GPIO6 - nIRQ**

Refer to GPIO configuration section.

**GPIO7 - PG of Internal Rail (Buck4)**

Refer to GPIO configuration section.

**GPIO8 - EN of Internal Rail (Buck4)**

Refer to GPIO configuration section.

## REGISTER MAPS

### Register Types

The register types of SGM260421 are as follows.

#### Basic Volatile

Customer R/W (Read and Write) and R (Read only).

The register values can be modified to change the device function. However, if the power is recycled, the changes are lost. The default values of register are fixed and cannot be altered.

#### Basic Non-Volatile

The register values can be modified to change the device function. Although changes are lost upon power is recycled, the default values can be pre-set at the factory to tailor the device for specific applications. For more demands, please consult with sales.

The following table shows the SGM260421 register map. It shows the register default value of SGM260421-001 CMI.

| ADDR (HEX) | REGISTER NAME         | DEFAULT VALUE (HEX) | TYPE |
|------------|-----------------------|---------------------|------|
| 0x00       | TOP_STATUS_REG        | 00                  | R    |
| 0x01       | RAIL_STATUS_REG       | 00                  | R    |
| 0x02       | RAIL_FLAG_REG0        | 00                  | R    |
| 0x03       | RAIL_FLAG_REG1        | 00                  | R    |
| 0x04       | RAIL_FLAG_REG2        | 00                  | R    |
| 0x05       | nIRQ_FLAG_REG         | 00                  | R    |
| 0x06       | nIRQ_MASK_REG         | 00                  | R/W  |
| 0x07       | nRESET_MASK_REG       | 00                  | R/W  |
| 0x08       | GPIO1_REG             | 3B                  | R/W  |
| 0x09       | GPIO2_REG             | 52                  | R/W  |
| 0x0A       | GPIO3_REG             | 50                  | R/W  |
| 0x0B       | GPIO4_REG             | 53                  | R/W  |
| 0x0C       | GPIO5_REG             | 30                  | R/W  |
| 0x0D       | GPIO6_REG             | 53                  | R/W  |
| 0x0E       | GPIO7_REG             | 49                  | R/W  |
| 0x0F       | GPIO8_REG             | 3A                  | R/W  |
| 0x10       | INTERNAL_RAIL_EN_REG0 | 00                  | R/W  |
| 0x11       | INTERNAL_RAIL_EN_REG1 | 00                  | R/W  |
| 0x12       | INTERNAL_RAIL_EN_REG2 | 00                  | R/W  |
| 0x13       | INTERNAL_RAIL_PG_REG0 | 00                  | R/W  |
| 0x14       | INTERNAL_RAIL_PG_REG1 | 00                  | R/W  |
| 0x15       | INTERNAL_RAIL_PG_REG2 | 00                  | R/W  |
| 0x16       | EXTRA_DLY_REG0        | 40                  | R/W  |
| 0x17       | EXTRA_DLY_REG1        | 00                  | R/W  |
| 0x18       | EXTRA_DLY_REG2        | 44                  | R/W  |
| 0x19       | EXTRA_DLY_REG3        | 00                  | R/W  |
| 0x1A       | EXTRA_DLY_REG4        | 00                  | R/W  |
| 0x1B       | EXTRA_DLY_REG5        | 00                  | R/W  |
| 0x1C       | EXTRA_DLY_REG6        | 00                  | R/W  |
| 0x1D       | EXTRA_DLY_REG7        | 00                  | R/W  |
| 0x1E       | EXTRA_DLY_REG8        | 00                  | R/W  |

## REGISTER MAPS (continued)

| ADDR (HEX) | REGISTER NAME      | DEFAULT VALUE (HEX) | TYPE |
|------------|--------------------|---------------------|------|
| 0x1F       | EXT_EN_REG0        | 00                  | R/W  |
| 0x20       | EXT_EN_REG1        | 14                  | R/W  |
| 0x21       | Reserved           | FF                  | R/W  |
| 0x22       | VIN_VTH_REG0       | 00                  | R/W  |
| 0x23       | VIN_VTH_REG1       | 40                  | R/W  |
| 0x24       | ADDRESS_REG        | 00                  | R    |
| 0x25       | MANUFACTURE_ID_REG | 42                  | R    |
| 0x26       | DEVICE_ID_REG      | 49                  | R    |
| 0x27       | CMI_NUMBER_REG     | 01                  | R    |
| 0x28       | B1_CFG_REG0        | 6B                  | R/W  |
| 0x29       | B1_CFG_REG1        | 90                  | R/W  |
| 0x2A       | B1_VSET0_REG       | 68                  | R/W  |
| 0x2B       | B1_VSET1_REG       | E8                  | R/W  |
| 0x2C       | B2_CFG_REG0        | 6B                  | R/W  |
| 0x2D       | B2_CFG_REG1        | 8A                  | R/W  |
| 0x2E       | B2_VSET0_REG       | 46                  | R/W  |
| 0x2F       | B2_VSET1_REG       | 46                  | R/W  |
| 0x30       | B2_DVS_VSET_REG    | 46                  | R/W  |
| 0x31       | B3_CFG_REG0        | 5B                  | R/W  |
| 0x32       | B3_CFG_REG1        | 90                  | R/W  |
| 0x33       | B3_VSET0_REG       | 9E                  | R/W  |
| 0x34       | B3_VSET1_REG       | 19                  | R/W  |
| 0x35       | B3_VSET2_REG       | 19                  | R/W  |
| 0x36       | B3_DVS_VSET0_REG   | 94                  | R/W  |
| 0x37       | B3_DVS_VSET1_REG   | 0F                  | R/W  |
| 0x38       | B3_DVS_VSET2_REG   | 0F                  | R/W  |
| 0x39       | B4_CFG_REG0        | 59                  | R/W  |
| 0x3A       | B4_CFG_REG1        | 80                  | R/W  |
| 0x3B       | B4_VSET0_REG       | 8A                  | R/W  |
| 0x3C       | B4_VSET1_REG       | 0A                  | R/W  |
| 0x3D       | B4_VSET2_REG       | 8A                  | R/W  |
| 0x3E       | LDO_CFG_REG0       | D8                  | R/W  |
| 0x3F       | LDO_CFG_REG1       | 03                  | R/W  |
| 0x40       | L1_VSET0_REG       | 90                  | R/W  |
| 0x41       | L1_VSET1_REG       | 10                  | R/W  |
| 0x42       | L2_VSET_REG        | 90                  | R/W  |
| 0x43       | EN_CTRL_REG        | FD                  | R/W  |
| 0x44       | DISCH_CTRL_REG0    | FD                  | R/W  |
| 0x45       | DISCH_CTRL_REG1    | 45                  | R/W  |
| 0x46       | DISCH_CTRL_REG2    | 55                  | R/W  |
| 0x47       | LPM_CTRL_REG       | 02                  | R/W  |
| 0x48       | SLEEP_CTRL_REG     | EC                  | R/W  |
| 0x49       | DPSLP_CTRL_REG     | 3C                  | R/W  |

**REGISTER MAPS (continued)**

| ADDR (HEX) | REGISTER NAME         | DEFAULT VALUE (HEX) | TYPE |
|------------|-----------------------|---------------------|------|
| 0x4A       | B1_TIME_REG           | 40                  | R/W  |
| 0x4B       | B2_TIME_REG           | 40                  | R/W  |
| 0x4C       | B3_TIME_REG           | 29                  | R/W  |
| 0x4D       | B4_TIME_REG           | 31                  | R/W  |
| 0x4E       | L1_TIME_REG           | 18                  | R/W  |
| 0x4F       | L2_TIME_REG           | 18                  | R/W  |
| 0x50       | WAKEUP_DLY_GPIO3_REG0 | B0                  | R/W  |
| 0x51       | WAKEUP_DLY_GPIO3_REG1 | 94                  | R/W  |
| 0x52       | PWRDIS_REG            | 00                  | R/W  |

## REGISTER MAPS (continued)

## REG0x00: TOP\_STATUS\_REG

Basic Volatile

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                      |
|------|----------|---------|------|--------------------------------------------------------------------------------------------------|
| D[7] | SYSMON   | 0       | R    | Real Time Status<br>0 = $V_{IN} < V_{SYSMON}$ (default)<br>1 = $V_{IN} > V_{SYSMON}$             |
| D[6] | SYSWARN  | 0       | R    | Real Time Status<br>0 = $V_{IN} < V_{SYSWARN}$ (default)<br>1 = $V_{IN} > V_{SYSWARN}$           |
| D[5] | POK_OV   | 0       | R    | Real Time Status<br>0 = $V_{IN} < V_{POK\_OV}$ (default)<br>1 = $V_{IN} > V_{POK\_OV}$           |
| D[4] | VIN_OV   | 0       | R    | Real Time Status<br>0 = $V_{IN} < V_{IN\_OV}$ (default)<br>1 = $V_{IN} > V_{IN\_OV}$             |
| D[3] | OT_WARN  | 0       | R    | Real Time Status<br>0 = Die temperature < OT_WARN (default)<br>1 = Die temperature > OT_WARN     |
| D[2] | OT       | 0       | R    | Real Time Status<br>0 = Die temperature < OT (default)<br>1 = Die temperature > OT               |
| D[1] | nRESET   | 0       | R    | Real Time Status<br>0 = Indicates PMIC power not good (default)<br>1 = Indicates PMIC power good |
| D[0] | nIRQ     | 0       | R    | Real Time Status<br>0 = Indicates PMIC has fault (default)<br>1 = Indicates PMIC has no fault    |

## REG0x01: RAIL\_STATUS\_REG

Basic Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                    |
|--------|----------|---------|------|--------------------------------------------------------------------------------|
| D[7]   | Buck1_PG | 0       | R    | Real Time Status<br>0 = Buck1 power not good (default)<br>1 = Buck1 power good |
| D[6]   | Buck2_PG | 0       | R    | Real Time Status<br>0 = Buck2 power not good (default)<br>1 = Buck2 power good |
| D[5]   | Buck3_PG | 0       | R    | Real Time Status<br>0 = Buck3 power not good (default)<br>1 = Buck3 power good |
| D[4]   | Buck4_PG | 0       | R    | Real Time Status<br>0 = Buck4 power not good (default)<br>1 = Buck4 power good |
| D[3]   | LDO1_PG  | 0       | R    | Real Time Status<br>0 = LDO1 power not good (default)<br>1 = LDO1 power good   |
| D[2]   | LDO2_PG  | 0       | R    | Real Time Status<br>0 = LDO2 power not good (default)<br>1 = LDO2 power good   |
| D[1:0] | Reserved | 00      | R    | Reserved                                                                       |

## REGISTER MAPS (continued)

## REG0x02: RAIL\_FLAG\_REG0

Basic Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                |
|--------|----------|---------|------|------------------------------------------------------------------------------------------------------------|
| D[7]   | Buck1_UV | 0       | R    | Flag bit, UV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck1 triggers UV |
| D[6]   | Buck2_UV | 0       | R    | Flag bit, UV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck2 triggers UV |
| D[5]   | Buck3_UV | 0       | R    | Flag bit, UV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck3 triggers UV |
| D[4]   | Buck4_UV | 0       | R    | Flag bit, UV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck4 triggers UV |
| D[3]   | LDO1_UV  | 0       | R    | Flag bit, UV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = LDO1 triggers UV  |
| D[2]   | LDO2_UV  | 0       | R    | Flag bit, UV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = LDO2 triggers UV  |
| D[1:0] | Reserved | 00      | R    | Reserved                                                                                                   |

## REG0x03: RAIL\_FLAG\_REG1

Basic Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                |
|--------|----------|---------|------|------------------------------------------------------------------------------------------------------------|
| D[7]   | Buck1_OV | 0       | R    | Flag bit, OV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck1 triggers OV |
| D[6]   | Buck2_OV | 0       | R    | Flag bit, OV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck2 triggers OV |
| D[5]   | Buck3_OV | 0       | R    | Flag bit, OV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck3 triggers OV |
| D[4]   | Buck4_OV | 0       | R    | Flag bit, OV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck4 triggers OV |
| D[3]   | LDO1_OV  | 0       | R    | Flag bit, OV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = LDO1 triggers OV  |
| D[2]   | LDO2_OV  | 0       | R    | Flag bit, OV fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = LDO2 triggers OV  |
| D[1:0] | Reserved | 00      | R    | Reserved                                                                                                   |

## REGISTER MAPS (continued)

## REG0x04: RAIL\_FLAG\_REG2

Basic Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                    |
|--------|------------|---------|------|----------------------------------------------------------------------------------------------------------------|
| D[7]   | Buck1_ILIM | 0       | R    | Flag bit, ILIM fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck1 triggers ILIM |
| D[6]   | Buck2_ILIM | 0       | R    | Flag bit, ILIM fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck2 triggers ILIM |
| D[5]   | Buck3_ILIM | 0       | R    | Flag bit, ILIM fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck3 triggers ILIM |
| D[4]   | Buck4_ILIM | 0       | R    | Flag bit, ILIM fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = Buck4 triggers ILIM |
| D[3]   | LDO1_ILIM  | 0       | R    | Flag bit, ILIM fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = LDO1 triggers ILIM  |
| D[2]   | LDO2_ILIM  | 0       | R    | Flag bit, ILIM fault removed and read this bit to clear it.<br>0 = Normal (default)<br>1 = LDO2 triggers ILIM  |
| D[1:0] | Reserved   | 00      | R    | Reserved                                                                                                       |

## REG0x05: nIRQ\_FLAG\_REG

Basic Volatile

| BITS | BIT NAME         | DEFAULT | TYPE | DESCRIPTION                                                                                                                                |
|------|------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | SYSMON_FLAG      | 0       | R    | 0 = No interrupt event occurs.<br>1 = Indicates the interrupt flag of the event.<br>Interrupt event removed and read this bit to clear it. |
| D[6] | SYSWARN_FLAG     | 0       | R    |                                                                                                                                            |
| D[5] | POK_OV_FLAG      | 0       | R    |                                                                                                                                            |
| D[4] | VIN_OV_FLAG      | 0       | R    |                                                                                                                                            |
| D[3] | OT_WARN_FLAG     | 0       | R    |                                                                                                                                            |
| D[2] | OT_FLAG          | 0       | R    |                                                                                                                                            |
| D[1] | OUTPUT_OVUV_FLAG | 0       | R    |                                                                                                                                            |
| D[0] | Reserved         | 0       | R    |                                                                                                                                            |

## REG0x06: nIRQ\_MASK\_REG

Basic Volatile

| BITS | BIT NAME              | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                     |
|------|-----------------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | SYSMON_FLAG_MASK      | 0       | R/W  | Only mask the interrupt flag events to the nIRQ inputs. But the flag bits still work well to indicate the interrupt events.<br>0 = Unmask the interrupt flag of the event. If the event flag is set 1, nIRQ will assert low.<br>1 = Mask the interrupt flag of the event. If the event flag is set 1, nIRQ will not assert low. |
| D[6] | SYSWARN_FLAG_MASK     | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |
| D[5] | POK_OV_FLAG_MASK      | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |
| D[4] | VIN_OV_FLAG_MASK      | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |
| D[3] | OT_WARN_FLAG_MASK     | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |
| D[2] | OT_FLAG_MASK          | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |
| D[1] | OUTPUT_OVUV_FLAG_MASK | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |
| D[0] | Reserved              | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                 |

## REGISTER MAPS (continued)

## REG0x07: nRESET\_MASK\_REG

Basic Non-Volatile

| BITS | BIT NAME              | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|-----------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | Buck1_PBAD_RESET_MASK | 0       | R/W  | Mask the protection function which will make nRESET signal active.<br>0 = Not mask, the event will assert nRESET low.<br>1 = Mask the event, the event will not assert nRESET low.<br><br>Note:<br>Only the rails power bad event, like output OV or UV events can assert nRESET low. Disabling the rails through I <sup>2</sup> C or GPIO won't affect nRESET signal.<br>nRESET keeps high when entering SLEEP or DPSLP mode. |
| D[6] | Buck2_PBAD_RESET_MASK | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[5] | Buck3_PBAD_RESET_MASK | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[4] | Buck4_PBAD_RESET_MASK | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[3] | LDO1_PBAD_RESET_MASK  | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[2] | LDO2_PBAD_RESET_MASK  | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[1] | VIN_OV_RESET_MASK     | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[0] | OT_RESET_MASK         | 0       | R/W  |                                                                                                                                                                                                                                                                                                                                                                                                                                |

## REG0x08: GPIO1\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                       |
|--------|--------------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO1_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO1 open-drain output (default)<br>1 = GPIO1 push-pull output.<br>This bit is only effective when GPIO1 is configured to output function.                                                                                                   |
| D[6:4] | nRST_DLY           | 011     | R/W  | The delay time from the PG signal of Buck3 rail in the power-up sequence to nRESET signal.<br>000 = 0.5ms<br>001 = 1ms<br>010 = 2ms<br>011 = 4ms (default)<br>100 = 8ms<br>101 = 16ms<br>110 = 32ms<br>111 = 64ms                                 |
| D[3]   | GPIO1_FUNC_CONFIG  | 1       | R/W  | 0 = nRESET<br>1 = Buck3 output voltage select (default)<br>If GPIO1 is configured as Buck3 voltage select function, and GPIO3 is also configured as Buck3 voltage and extra delay time select function, Buck3 voltage is decided by GPIO1 status. |
| D[2:0] | Reserved           | 011     | R/W  | Reserved                                                                                                                                                                                                                                          |

## REGISTER MAPS (continued)

## REG0x09: GPIO2\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|--------------------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO2_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO2 open-drain output (default)<br>1 = GPIO2 push-pull output.<br>This bit is only effective when GPIO2 is configured to output function.                                                                                                                                                                                                                                                                 |
| D[6:3] | GPIO2_FUNC_CONFIG  | 1010    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input)<br>0111 = PWREN (input)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input)<br>1010 = B1/B2 operation mode and voltage select (input) (default)<br>Above 1010 are not used. |
| D[2]   | GPIO2_I2C_CTRL     | 0       | R/W  | If the GPIO2 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO2 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                                                                             |
| D[1:0] | Reserved           | 10      | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                        |

## REG0x0A: GPIO3\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|--------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO3_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO3 open-drain output (default)<br>1 = GPIO3 push-pull output.<br>This bit is only effective when GPIO3 is configured to output function.                                                                                                                                                                                                                                                                                |
| D[6:3] | GPIO3_FUNC_CONFIG  | 1010    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input)<br>0111 = PWREN (input)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input)<br>1010 = B3 voltage and all the rails' extra delay time select. (input) (default)<br>Above 1010 are not used. |
| D[2]   | GPIO3_I2C_CTRL     | 0       | R/W  | If the GPIO3 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO3 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                                                                                            |
| D[1:0] | Reserved           | 00      | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                       |

## REGISTER MAPS (continued)

## REG0x0B: GPIO4\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO4_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO4 open-drain output (default)<br>1 = GPIO4 push-pull output.<br>This bit is only effective when GPIO4 is configured to output function.                                                                                                                                                                                                                                                                  |
| D[6:3] | GPIO4_FUNC_CONFIG  | 1010    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input)<br>0111 = PWREN (input)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input)<br>1010 = B4/L1 operation mode and voltage select. (input) (default)<br>Above 1010 are not used. |
| D[2]   | GPIO4_I2C_CTRL     | 0       | R/W  | If the GPIO4 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO4 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                                                                              |
| D[1]   | L1_MODE_AT_GPIO4_F | 1       | R/W  | 0 = L1 is LDO mode when GPIO4 float.<br>1 = L1 is LSW mode when GPIO4 float (default)<br>This bit is effective when GPIO4 configured to B4/L1 operation mode and voltage select function.                                                                                                                                                                                                                        |
| D[0]   | L1_MODE_AT_GPIO4_L | 1       | R/W  | 0 = L1 is LDO mode when GPIO4 low.<br>1 = L1 is LSW mode when GPIO4 low (default)<br>This bit is effective when GPIO4 configured to B4/L1 operation mode and voltage select function.                                                                                                                                                                                                                            |

## REG0x0C: GPIO5\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO5_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO5 open-drain output (default)<br>1 = GPIO5 push-pull output.<br>This bit is only effective when GPIO5 is configured to output function.                                                                                                                                                                                                       |
| D[6:3] | GPIO5_FUNC_CONFIG  | 0110    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input) (default)<br>0111 = PWREN (input)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input)<br>Above 1001 are not used. |
| D[2]   | GPIO5_I2C_CTRL     | 0       | R/W  | If the GPIO5 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO5 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                   |
| D[1]   | B4_MODE_AT_GPIO4_F | 0       | R/W  | 0 = B4 is Buck mode when GPIO4 float. (default)<br>1 = B4 is LDO mode when GPIO4 float<br>This bit is effective when GPIO4 configured to B4/L1 operation mode and voltage select function.                                                                                                                                                            |
| D[0]   | Reserved           | 0       | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                              |

## REGISTER MAPS (continued)

## REG0x0D: GPIO6\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO6_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO6 open-drain output (default)<br>1 = GPIO6 push-pull output.<br>This bit is only effective when GPIO6 is configured to output function.                                                                                                                                                                                                                                                   |
| D[6:3] | GPIO6_FUNC_CONFIG  | 1010    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input)<br>0111 = PWREN (input)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input)<br>1010 = L2 operation mode select. (input) (default)<br>Above 1010 are not used. |
| D[2]   | GPIO6_I2C_CTRL     | 0       | R/W  | If the GPIO6 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO6 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                                                               |
| D[1:0] | Reserved           | 11      | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                          |

## REG0x0E: GPIO7\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO7_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO7 open-drain output (default)<br>1 = GPIO7 push-pull output.<br>This bit is only effective when GPIO7 is configured to output function.                                                                                                                                                                                                       |
| D[6:3] | GPIO7_FUNC_CONFIG  | 1001    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input)<br>0111 = PWREN (input)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input) (default)<br>Above 1001 are not used. |
| D[2]   | GPIO7_I2C_CTRL     | 0       | R/W  | If the GPIO7 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO7 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                   |
| D[1:0] | Reserved           | 01      | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                              |

## REGISTER MAPS (continued)

## REG0x0F: GPIO8\_REG

Basic Non-Volatile

| BITS   | BIT NAME           | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | GPIO8_PUSH_PULL_EN | 0       | R/W  | 0 = GPIO8 open-drain output (default)<br>1 = GPIO8 push-pull output.<br>This bit is only effective when GPIO8 is configured to output function.                                                                                                                                                                                                       |
| D[6:3] | GPIO8_FUNC_CONFIG  | 0111    | R/W  | 0000 = nIRQ (output)<br>0001 = SYSMON (output)<br>0010 = SYSWARN (output)<br>0011 = EXT_EN (output)<br>0100 = I <sup>2</sup> C controlled output (output)<br>0101 = PG of Internal rail (output)<br>0110 = SLEEP (input)<br>0111 = PWREN (input) (default)<br>1000 = PWRDIS (input)<br>1001 = EN of internal rail (input)<br>Above 1001 are not used. |
| D[2]   | GPIO8_I2C_CTRL     | 0       | R/W  | If the GPIO8 is configured to I <sup>2</sup> C controlled output, this bit can control the GPIO8 output voltage level.<br>0 = Low level (default)<br>1 = High level                                                                                                                                                                                   |
| D[1:0] | Reserved           | 10      | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                              |

## REG0x10: INTERNAL\_RAIL\_EN\_REG0

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | B1_EN_CONFIG | 0       | R/W  | 0 = B1 has no GPIO as EN control. (default)<br>1 = B1 has a GPIO as EN control.                                                                                                                |
| D[6:4] | B1_EN_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B1_EN_CONFIG = 1. |
| D[3]   | B2_EN_CONFIG | 0       | R/W  | 0 = B2 has no GPIO as EN control (default)<br>1 = B2 has a GPIO as EN control                                                                                                                  |
| D[2:0] | B2_EN_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B2_EN_CONFIG = 1. |

## REGISTER MAPS (continued)

## REG0x11: INTERNAL\_RAIL\_EN\_REG1

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | B3_EN_CONFIG | 0       | R/W  | 0 = B3 has no GPIO as EN control (default)<br>1 = B3 has a GPIO as EN control                                                                                                                  |
| D[6:4] | B3_EN_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B3_EN_CONFIG = 1. |
| D[3]   | B4_EN_CONFIG | 0       | R/W  | 0 = B4 has no GPIO as EN control (default)<br>1 = B4 has a GPIO as EN control                                                                                                                  |
| D[2:0] | B4_EN_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B4_EN_CONFIG = 1. |

## REG0x12: INTERNAL\_RAIL\_EN\_REG2

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | L1_EN_CONFIG | 0       | R/W  | 0 = LDO1 has no GPIO as EN control (default)<br>1 = LDO1 has a GPIO as EN control                                                                                                              |
| D[6:4] | L1_EN_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when L1_EN_CONFIG = 1. |
| D[3]   | L2_EN_CONFIG | 0       | R/W  | 0 = LDO2 has no GPIO as EN control (default)<br>1 = LDO2 has a GPIO as EN control                                                                                                              |
| D[2:0] | L2_EN_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when L2_EN_CONFIG = 1. |

## REGISTER MAPS (continued)

## REG0x13: INTERNAL\_RAIL\_PG\_REG0

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | B1_PG_CONFIG | 0       | R/W  | 0 = B1 has no GPIO as PG output (default)<br>1 = B1 has a GPIO as PG output                                                                                                                    |
| D[6:4] | B1_PG_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B1_PG_CONFIG = 1. |
| D[3]   | B2_PG_CONFIG | 0       | R/W  | 0 = B2 has no GPIO as PG output (default)<br>1 = B2 has a GPIO as PG output                                                                                                                    |
| D[2:0] | B2_PG_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B2_PG_CONFIG = 1. |

## REG0x14: INTERNAL\_RAIL\_PG\_REG1

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | B3_PG_CONFIG | 0       | R/W  | 0 = B3 has no GPIO as PG output (default)<br>1 = B3 has a GPIO as PG output                                                                                                                    |
| D[6:4] | B3_PG_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B3_PG_CONFIG = 1. |
| D[3]   | B4_PG_CONFIG | 0       | R/W  | 0 = B4 has no GPIO as PG output (default)<br>1 = B4 has a GPIO as PG output                                                                                                                    |
| D[2:0] | B4_PG_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when B4_PG_CONFIG = 1. |

## REGISTER MAPS (continued)

## REG0x15: INTERNAL\_RAIL\_PG\_REG2

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | L1_PG_CONFIG | 0       | R/W  | 0 = L1 has no GPIO as PG output (default)<br>1 = L1 has a GPIO as PG output                                                                                                                    |
| D[6:4] | L1_PG_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when L1_PG_CONFIG = 1. |
| D[3]   | L2_PG_CONFIG | 0       | R/W  | 0 = L2 has no GPIO as PG output (default)<br>1 = L2 has a GPIO as PG output                                                                                                                    |
| D[2:0] | L2_PG_SEL    | 000     | R/W  | 000 = GPIO2 (default)<br>001 = GPIO3<br>010 = GPIO4<br>011 = GPIO5<br>100 = GPIO6<br>101 = GPIO7<br>110 = GPIO8<br>Above 110 are not used.<br>These bits only effective when L2_PG_CONFIG = 1. |

## REG0x16: EXTRA\_DLY\_REG0

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                      |
|--------|----------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B1_EXTRA_DLY_GPIO3_H | 0100    | R/W  | Buck1 extra delay time when GPIO3 is high.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x16[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.  |
| D[3:0] | B1_EXTRA_DLY_GPIO3_F | 0000    | R/W  | Buck1 extra delay time when GPIO3 is float.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x16[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |

## REG0x17: EXTRA\_DLY\_REG1

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                     |
|--------|----------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B1_EXTRA_DLY_GPIO3_L | 0000    | R/W  | Buck1 extra delay time when GPIO3 is low.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x17[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.  |
| D[3:0] | B2_EXTRA_DLY_GPIO3_H | 0000    | R/W  | Buck2 extra delay time when GPIO3 is high.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x17[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |

## REGISTER MAPS (continued)

## REG0x18: EXTRA\_DLY\_REG2

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                      |
|--------|----------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B2_EXTRA_DLY_GPIO3_F | 0100    | R/W  | Buck2 extra delay time when GPIO3 is float.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x18[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |
| D[3:0] | B2_EXTRA_DLY_GPIO3_L | 0100    | R/W  | Buck2 extra delay time when GPIO3 is low.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x18[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.   |

## REG0x19: EXTRA\_DLY\_REG3

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                      |
|--------|----------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B3_EXTRA_DLY_GPIO3_H | 0000    | R/W  | Buck3 extra delay time when GPIO3 is high.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x19[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.  |
| D[3:0] | B3_EXTRA_DLY_GPIO3_F | 0000    | R/W  | Buck3 extra delay time when GPIO3 is float.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x19[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |

## REG0x1A: EXTRA\_DLY\_REG4

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                     |
|--------|----------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B3_EXTRA_DLY_GPIO3_L | 0000    | R/W  | Buck3 extra delay time when GPIO3 is low.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1A[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.  |
| D[3:0] | B4_EXTRA_DLY_GPIO3_H | 0000    | R/W  | Buck4 extra delay time when GPIO3 is high.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1A[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |

## REG0x1B: EXTRA\_DLY\_REG5

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                      |
|--------|----------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B4_EXTRA_DLY_GPIO3_F | 0000    | R/W  | Buck4 extra delay time when GPIO3 is float.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1B[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |
| D[3:0] | B4_EXTRA_DLY_GPIO3_L | 0000    | R/W  | Buck4 extra delay time when GPIO3 is low.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1B[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.   |

## REGISTER MAPS (continued)

## REG0x1C: EXTRA\_DLY\_REG6

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                     |
|--------|----------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | L1_EXTRA_DLY_GPIO3_H | 0000    | R/W  | LDO1 extra delay time when GPIO3 is high.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1C[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.  |
| D[3:0] | L1_EXTRA_DLY_GPIO3_F | 0000    | R/W  | LDO1 extra delay time when GPIO3 is float.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1C[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |

## REG0x1D: EXTRA\_DLY\_REG7

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                    |
|--------|----------------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | L1_EXTRA_DLY_GPIO3_L | 0000    | R/W  | LDO1 extra delay time when GPIO3 is low.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1D[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.  |
| D[3:0] | L2_EXTRA_DLY_GPIO3_H | 0000    | R/W  | LDO2 extra delay time when GPIO3 is high.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1D[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |

## REG0x1E: EXTRA\_DLY\_REG8

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                     |
|--------|----------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | L2_EXTRA_DLY_GPIO3_F | 0000    | R/W  | LDO2 extra delay time when GPIO3 is float.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1E[7:4]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function. |
| D[3:0] | L2_EXTRA_DLY_GPIO3_L | 0000    | R/W  | LDO2 extra delay time when GPIO3 is low.<br>Offset = 0ms<br>Step = 0.25ms<br>Delay time = DEC(0x1E[3:0]) × 0.25ms<br>These bits are effective when GPIO3 as extra delay time select function.   |

## REGISTER MAPS (continued)

## REG0x1F: EXT\_EN\_REG0

Basic Non-Volatile

| BITS   | BIT NAME             | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | EXT_EN_INPUT_TRIGGER | 0000    | R/W  | <p>0000 = VIN SYSMON rising threshold (default)<br/> 0001 = Buck1 PG<br/> 0010 = Buck2 PG<br/> 0011 = Buck3 PG<br/> 0100 = Buck4 PG<br/> 0101 = LDO1 PG<br/> 0110 = LDO2 PG<br/> 0111 = GPIO2<br/> 1000 = GPIO3<br/> 1001 = GPIO4<br/> 1010 = GPIO5<br/> 1011 = GPIO6<br/> 1100 = GPIO7<br/> 1101 = GPIO8</p> <p>Program the EXT_EN startup sequence input trigger if a GPIO is configured to EXT_EN function. Above 1101 are not used.</p> |
| D[3:0] | EXT_EN_ON_DLY        | 0000    | R/W  | <p>Offset = 0ms<br/> Step = 0.5ms<br/> Delay time = DEC(0x1F[3:0]) × 0.5ms<br/> Set EXT_EN delay time from the input trigger to EXT_EN become high.</p>                                                                                                                                                                                                                                                                                     |

## REG0x20: EXT\_EN\_REG1

Basic Non-Volatile

| BITS   | BIT NAME          | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                     |
|--------|-------------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:5] | EXT_EN_OFF_DLY    | 000     | R/W  | <p>000 = 0ms (default)<br/> 001 = 0.25ms<br/> 010 = 0.5ms<br/> 011 = 0.75ms<br/> 100 = 1ms<br/> 101 = 2ms<br/> 110 = 4ms<br/> 111 = 8ms</p> <p>Set EXT_EN turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS.</p> |
| D[4:2] | EXT_EN_WAKEUP_DLY | 101     | R/W  | <p>000 = 0ms<br/> 001 = 0.25ms<br/> 010 = 0.5ms<br/> 011 = 0.75ms<br/> 100 = 1ms<br/> 101 = 2ms (default)<br/> 110 = 4ms<br/> 111 = 8ms</p> <p>Set EXT_EN wake-up delay time when exiting SLEEP or DPSLP mode.</p>              |
| D[1]   | EXT_EN_ON_SLEEP   | 0       | R/W  | <p>0 = Pull EXT_EN low to shutdown external rail when IC enters sleep mode.<br/> (default)<br/> 1 = EXT_EN keeps high when IC enters SLEEP mode.</p>                                                                            |
| D[0]   | EXT_EN_ON_DPSLP   | 0       | R/W  | <p>0 = Pull EXT_EN low to shutdown external rail when IC enters DPSLP mode.<br/> (default)<br/> 1 = EXT_EN keeps high when IC enters DPSLP mode.</p>                                                                            |

## REG0x21: Reserved

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT   | TYPE | DESCRIPTION |
|--------|----------|-----------|------|-------------|
| D[7:0] | Reserved | 1111 1111 | R/W  | Reserved    |

## REGISTER MAPS (continued)

## REG0x22: VIN\_VTH\_REG0

Basic Non-Volatile

| BITS   | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                                                                      |
|--------|-------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | SYSMON_VTH  | 0000    | R/W  | $V_{TH}$ of the SYSMON Selection<br>Offset = 2725mV<br>Step = 25mV<br>Max = 3100mV<br>SYSMON threshold = $2725mV + DEC(0x22[7:4]) \times 25mV$   |
| D[3:0] | SYSWARN_VTH | 0000    | R/W  | $V_{TH}$ of the SYSWARN Selection<br>Offset = 2775mV<br>Step = 25mV<br>Max = 3150mV<br>SYSWARN threshold = $2775mV + DEC(0x22[3:0]) \times 25mV$ |

## REG0x23: VIN\_VTH\_REG1

Basic Non-Volatile

| BITS   | BIT NAME       | DEFAULT | TYPE | DESCRIPTION                                                                                        |
|--------|----------------|---------|------|----------------------------------------------------------------------------------------------------|
| D[7:6] | VIN_POK_OV_SET | 01      | R/W  | $V_{TH}$ of the VIN_POK_OV Selection<br>00 = 3.5V<br>01 = 3.7V (default)<br>10 = 5.3V<br>11 = 5.5V |
| D[5]   | VIN_OV_SET     | 0       | R/W  | $V_{TH}$ of the VIN_OV Selection<br>0 = 3.9V (default)<br>1 = 5.7V                                 |
| D[4]   | VIN_LVL        | 0       | R/W  | VIN UVLO Falling Threshold<br>0 = 2.5V (default)<br>1 = 3.5V                                       |
| D[3:2] | Reserved       | 00      | R/W  | Reserved                                                                                           |
| D[1]   | POWER_I2C_OFF  | 0       | R/W  | 0 = PMIC work normally (default)<br>1 = PMIC shutdown                                              |
| D[0]   | Reserved       | 0       | R/W  | Reserved                                                                                           |

## REG0x24: ADDRESS\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                |
|--------|----------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | ADDRESS  | 00      | R    | 00 = 010 0101 (0x25h) address (default)<br>01 = 010 0111 (0x27h) address<br>10 = 110 0111 (0x67h) address<br>11 = 110 1011 (0x6Bh) address |
| D[5:0] | Reserved | 00 0000 | R    | Reserved                                                                                                                                   |

## REG0x25: MANUFACTURE\_ID\_REG

Basic Volatile

| BITS   | BIT NAME       | DEFAULT   | TYPE | DESCRIPTION      |
|--------|----------------|-----------|------|------------------|
| D[7:0] | MANUFACTURE ID | 0100 0010 | R    | 0x42 for SGMICRO |

## REG0x26: DEVICE\_ID\_REG

Basic Volatile

| BITS   | BIT NAME  | DEFAULT   | TYPE | DESCRIPTION        |
|--------|-----------|-----------|------|--------------------|
| D[7:0] | DEVICE ID | 0100 1001 | R    | 0x49 for SGM260421 |

## REGISTER MAPS (continued)

## REG0x27: CMI\_NUMBER\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT   | TYPE | DESCRIPTION                |
|--------|------------|-----------|------|----------------------------|
| D[7:0] | CMI_NUMBER | 0000 0001 | R    | OTP Configure Version Code |

## REG0x28: B1\_CFG\_REG0

Basic Non-Volatile

| BITS   | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                       |
|--------|-------------|---------|------|---------------------------------------------------------------------------------------------------|
| D[7:6] | B1_FREQ_SET | 01      | R/W  | Set Buck1 Frequency<br>00 = 1.5MHz<br>01 = 2MHz (default)<br>10 = 2.5MHz<br>11 = 3MHz             |
| D[5:4] | B1_ILIM_SET | 10      | R/W  | Set Buck1 Valley Current Limit<br>00 = 3A<br>01 = 4A<br>10 = 5A (default)<br>11 = 6A              |
| D[3:2] | B1_DVS_SET  | 10      | R/W  | Set Buck1 DVS Slew Rate<br>00 = 2.5mV/µs<br>01 = 5mV/µs<br>10 = 10mV/µs (default)<br>11 = 20mV/µs |
| D[1:0] | B1_SS       | 11      | R/W  | Set Buck1 Soft-Start Time<br>00 = 60µs<br>01 = 75µs<br>10 = 115µs<br>11 = 175µs (default)         |

## REG0x29: B1\_CFG\_REG1

Basic Non-Volatile

| BITS   | BIT NAME              | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                     |
|--------|-----------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved              | 10      | R/W  | Reserved                                                                                                                                                                                                                                                                                        |
| D[5]   | B1_MODE               | 0       | R/W  | Set Buck1 mode at factory when GPIO2 is not set as B1/B2 operation mode and voltage select.<br>0 = Buck mode (default)<br>1 = Bypass mode                                                                                                                                                       |
| D[4:2] | B1_WAKEUP_DLY_GPIO3_F | 100     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms (default)<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck1 wake-up delay time when exiting SLEEP or DPSLP mode.<br>These bits also set Buck1 wake-up delay time if there is no GPIO3 selecting wake-up delay function. |
| D[1]   | B1_FPWM               | 0       | R/W  | 0 = PSM (default)<br>1 = Forced PWM mode<br>This bit is high priority. If both FPWM bit = 1 and LPM bit = 1, the DC/DC enters forced PWM mode.                                                                                                                                                  |
| D[0]   | Reserved              | 0       | R/W  | Reserved                                                                                                                                                                                                                                                                                        |

## REGISTER MAPS (continued)

## REG0x2A: B1\_VSET0\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                  |
|--------|----------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved | 01      | R/W  | Reserved                                                                                                                                     |
| D[5:0] | B1_VSET0 | 101000  | R/W  | Buck1 Output Voltage:<br>Offset = 1.7V<br>Step = 20mV<br>Max = 2.9V<br>111100 ~111111: 2.9V<br>Output voltage = 1.7V + DEC(0x2A[5:0]) × 20mV |

## REG0x2B: B1\_VSET1\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                  |
|--------|----------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved | 11      | R/W  | Reserved                                                                                                                                     |
| D[5:0] | B1_VSET1 | 101000  | R/W  | Buck1 Output Voltage:<br>Offset = 1.7V<br>Step = 20mV<br>Max = 2.9V<br>111100 ~111111: 2.9V<br>Output voltage = 1.7V + DEC(0x2B[5:0]) × 20mV |

## REG0x2C: B2\_CFG\_REG0

Basic Non-Volatile

| BITS   | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                       |
|--------|-------------|---------|------|---------------------------------------------------------------------------------------------------|
| D[7:6] | B2_FREQ_SET | 01      | R/W  | Set Buck2 Frequency<br>00 = 1.5MHz<br>01 = 2MHz (default)<br>10 = 2.5MHz<br>11 = 3MHz             |
| D[5:4] | B2_ILIM_SET | 10      | R/W  | Set Buck2 Valley Current limit<br>00 = 2A<br>01 = 3A<br>10 = 4A (default)<br>11 = 5A              |
| D[3:2] | B2_DVS_SET  | 10      | R/W  | Set Buck2 DVS Slew Rate<br>00 = 2.5mV/µs<br>01 = 5mV/µs<br>10 = 10mV/µs (default)<br>11 = 20mV/µs |
| D[1:0] | B2_SS       | 11      | R/W  | Set Buck2 Soft-Start Time<br>00 = 30µs<br>01 = 55µs<br>10 = 115µs<br>11 = 175µs (default)         |

## REGISTER MAPS (continued)

## REG0x2D: B2\_CFG\_REG1

Basic Non-Volatile

| BITS   | BIT NAME              | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                     |
|--------|-----------------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved              | 10      | R/W  | Reserved                                                                                                                                                                                                                                                                                        |
| D[5]   | B2_DVS_AT_SLEEP       | 0       | R/W  | 0 = Buck2 output voltage stays unchanged when PMIC enters SLEEP mode. (default)<br>1 = Buck2 enters DVS mode adjusting to another output voltage when entering SLEEP mode.                                                                                                                      |
| D[4]   | B2_DVS_AT_DPSLP       | 0       | R/W  | 0 = Buck2 output voltage stays unchanged when PMIC enters DPSLP mode. (default)<br>1 = Buck2 enters DVS mode adjusting to another output voltage when entering DPSLP mode.                                                                                                                      |
| D[3:1] | B2_WAKEUP_DLY_GPIO3_F | 101     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms (default)<br>110 = 4ms<br>111 = 8ms<br>Set Buck2 wake-up delay time when exiting SLEEP or DPSLP mode.<br>These bits also set Buck2 wake-up delay time if there is no GPIO3 selecting wake-up delay function. |
| D[0]   | B2_FPWM               | 0       | R/W  | 0 = PSM (default)<br>1 = Forced PWM mode<br>This bit is high priority. If both FPWM bit = 1 and LPM bit = 1, the DC/DC enters forced PWM mode.                                                                                                                                                  |

## REG0x2E: B2\_VSET0\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                                                                                        |
|--------|----------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved | 0        | R/W  | Reserved                                                                                                                                                                                                                           |
| D[6:0] | B2_VSET0 | 100 0110 | R/W  | Buck2 Output Voltage:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.33V<br>1001101: 1.27V<br>1001110: 1.31V<br>1001111: 1.32V<br>1010000: 1.33V<br>Output voltage = 0.5V + DEC(0x2E[6:0]) × 10mV (only applicable to less than 1.27V) |

## REG0x2F: B2\_VSET1\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                                                                                        |
|--------|----------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved | 0        | R/W  | Reserved                                                                                                                                                                                                                           |
| D[6:0] | B2_VSET1 | 1000 110 | R/W  | Buck2 Output Voltage:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.33V<br>1001101: 1.27V<br>1001110: 1.31V<br>1001111: 1.32V<br>1010000: 1.33V<br>Output voltage = 0.5V + DEC(0x2F[6:0]) × 10mV (only applicable to less than 1.27V) |

## REGISTER MAPS (continued)

## REG0x30: B2\_DVS\_VSET\_REG

Basic Non-Volatile

| BITS   | BIT NAME    | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                                                                                                           |
|--------|-------------|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved    | 0        | R/W  | Reserved                                                                                                                                                                                                                                              |
| D[6:0] | B2_DVS_VSET | 100 0110 | R/W  | Buck2 Output Voltage in SLEEP/DPSLP:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.33V<br>100 1101: 1.27V<br>100 1110: 1.31V<br>100 1111: 1.32V<br>101 0000: 1.33V<br>Output voltage = 0.5V + DEC(0x30[6:0]) × 10mV (only applicable to less than 1.27V) |

## REG0x31: B3\_CFG\_REG0

Basic Non-Volatile

| BITS   | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                      |
|--------|-------------|---------|------|--------------------------------------------------------------------------------------------------|
| D[7:6] | B3_FREQ_SET | 01      | R/W  | Set Buck3 Frequency<br>00 = 1.5MHz<br>01 = 2MHz (default)<br>10 = 2.5MHz<br>11 = 3MHz            |
| D[5:4] | B3_ILIM_SET | 01      | R/W  | Set Buck3 Valley Current Limit<br>00 = 4A<br>01 = 5A (default)<br>10 = 6A<br>11 = 7A             |
| D[3:2] | B3_DVS_SET  | 10      | R/W  | Set Buck3 DVS Slew Rate<br>00 = 5mV/µs<br>01 = 10mV/µs<br>10 = 15mV/µs (default)<br>11 = 20mV/µs |
| D[1:0] | B3_SS       | 11      | R/W  | Set Buck3 Soft-Start Time<br>00 = 30µs<br>01 = 55µs<br>10 = 115µs<br>11 = 175µs (default)        |

## REGISTER MAPS (continued)

## REG0x32: B3\_CFG\_REG1

Basic Non-Volatile

| BITS   | BIT NAME        | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                              |
|--------|-----------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved        | 10      | R/W  | Reserved                                                                                                                                                                                 |
| D[5]   | B3_DVS_AT_SLEEP | 0       | R/W  | 0 = Buck3 output voltage stays unchanged when PMIC enters SLEEP mode. (default)<br>1 = Buck3 enters DVS mode adjusting to another output voltage when entering SLEEP mode.               |
| D[4]   | B3_DVS_AT_DPSLP | 1       | R/W  | 0 = Buck3 output voltage stays unchanged when PMIC enters DPSLP mode.<br>1 = Buck3 enters DVS mode adjusting to another output voltage when entering DPSLP mode. (default)               |
| D[3:1] | B3_WAKEUP_DLY   | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck3 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[0]   | B3_FPWM         | 0       | R/W  | 0 = PSM (default)<br>1 = Forced PWM mode<br>This bit is high priority. If both FPWM bit = 1 and LPM bit = 1, the DC/DC enters forced PWM mode.                                           |

## REG0x33: B3\_VSET0\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                    |
|--------|----------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved | 1        | R/W  | Reserved                                                                                                                                       |
| D[6:0] | B3_VSET0 | 001 1110 | R/W  | Buck3 Output Voltage:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.3V<br>1010000 ~1111111: 1.3V<br>Output voltage = 0.5V + DEC(0x33[6:0]) × 10mV |

## REG0x34: B3\_VSET1\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                    |
|--------|----------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved | 0        | R/W  | Reserved                                                                                                                                       |
| D[6:0] | B3_VSET1 | 001 1001 | R/W  | Buck3 Output Voltage:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.3V<br>1010000 ~1111111: 1.3V<br>Output voltage = 0.5V + DEC(0x34[6:0]) × 10mV |

## REGISTER MAPS (continued)

## REG0x35: B3\_VSET2\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                     |
|--------|----------|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved | 0        | R/W  | Reserved                                                                                                                                        |
| D[6:0] | B3_VSET2 | 001 1001 | R/W  | Buck3 Output Voltage:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.3V<br>1010000 ~ 1111111: 1.3V<br>Output voltage = 0.5V + DEC(0x35[6:0]) × 10mV |

## REG0x36: B3\_DVS\_VSET0\_REG

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                    |
|--------|--------------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved     | 1        | R/W  | Reserved                                                                                                                                                       |
| D[6:0] | B3_DVS_VSET0 | 001 0100 | R/W  | Buck3 Output Voltage in SLEEP/DPSLP:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.3V<br>1010000 ~ 1111111: 1.3V<br>Output voltage = 0.5V + DEC(0x36[6:0]) × 10mV |

## REG0x37: B3\_DVS\_VSET1\_REG

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                    |
|--------|--------------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved     | 0        | R/W  | Reserved                                                                                                                                                       |
| D[6:0] | B3_DVS_VSET1 | 000 1111 | R/W  | Buck3 Output Voltage in SLEEP/DPSLP:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.3V<br>1010000 ~ 1111111: 1.3V<br>Output voltage = 0.5V + DEC(0x37[6:0]) × 10mV |

## REG0x38: B3\_DVS\_VSET2\_REG

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                    |
|--------|--------------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved     | 0        | R/W  | Reserved                                                                                                                                                       |
| D[6:0] | B3_DVS_VSET2 | 000 1111 | R/W  | Buck3 Output Voltage in SLEEP/DPSLP:<br>Offset = 0.5V<br>Step = 10mV<br>Max = 1.3V<br>1010000 ~ 1111111: 1.3V<br>Output voltage = 0.5V + DEC(0x38[6:0]) × 10mV |

## REGISTER MAPS (continued)

## REG0x39: B4\_CFG\_REG0

Basic Non-Volatile

| BITS   | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                       |
|--------|-------------|---------|------|---------------------------------------------------------------------------------------------------|
| D[7:6] | B4_FREQ_SET | 01      | R/W  | Set Buck4 Frequency<br>00 = 1.5MHz<br>01 = 2MHz (default)<br>10 = 2.5MHz<br>11 = 3MHz             |
| D[5:4] | B4_ILIM_SET | 01      | R/W  | Set Buck4 Valley Current Limit<br>00 = 2A<br>01 = 3A (default)<br>10 = 4A<br>11 = 5A              |
| D[3:2] | B4_DVS_SET  | 10      | R/W  | Set Buck4 DVS Slew Rate<br>00 = 2.5mV/µs<br>01 = 5mV/µs<br>10 = 10mV/µs (default)<br>11 = 20mV/µs |
| D[1:0] | B4_SS       | 01      | R/W  | Set Buck4 Soft-Start Time<br>00 = 30µs<br>01 = 55µs (default)<br>10 = 115µs<br>11 = 175µs         |

## REG0x3A: B4\_CFG\_REG1

Basic Non-Volatile

| BITS   | BIT NAME      | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                              |
|--------|---------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved      | 10      | R/W  | Reserved                                                                                                                                                                                 |
| D[5]   | B4_MODE       | 0       | R/W  | Set Buck4 mode at factory when GPIO4 is not set as B4/L1 operation mode and voltage select.<br>0 = Buck mode (default)<br>1 = LDO mode                                                   |
| D[4:2] | B4_WAKEUP_DLY | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck4 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[1]   | B4_FPWM       | 0       | R/W  | 0 = PSM (default)<br>1 = Forced PWM mode<br>This bit is high priority. If both FPWM bit = 1 and LPM bit = 1, the DC/DC enters forced PWM mode.                                           |
| D[0]   | Reserved      | 0       | R/W  | Reserved                                                                                                                                                                                 |

## REG0x3B: B4\_VSET0\_REG

Basic Non-Volatile

| BITS   | BIT NAME  | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                    |
|--------|-----------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | B4_SS_LDO | 1        | R/W  | Set Buck4-LDO Soft-Start Time<br>0 = 55µs<br>1 = 100µs (default)                                                                               |
| D[6:0] | B4_VSET0  | 000 1010 | R/W  | Buck4 Output Voltage:<br>Offset = 0.8V<br>Step = 10mV<br>Max = 2.0V<br>1111000 ~1111111: 2.0V<br>Output voltage = 0.8V + DEC(0x3B[6:0]) × 10mV |

## REGISTER MAPS (continued)

## REG0x3C: B4\_VSET1\_REG

Basic Non-Volatile

| BITS   | BIT NAME        | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                      |
|--------|-----------------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | B4_LDO_ILIM_SET | 0        | R/W  | Set Buck4-LDO Current Limit<br>0 = 400mA (default)<br>1 = 500mA                                                                                  |
| D[6:0] | B4_VSET1        | 000 1010 | R/W  | Buck4 Output Voltage:<br>Offset = 0.8V<br>Step = 10mV<br>Max = 2.0V<br>111 1000 ~111 1111: 2.0V<br>Output voltage = 0.8V + DEC(0x3C[6:0]) × 10mV |

## REG0x3D: B4\_VSET2\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT  | TYPE | DESCRIPTION                                                                                                                                                  |
|--------|----------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7]   | Reserved | 1        | R/W  | Reserved                                                                                                                                                     |
| D[6:0] | B4_VSET2 | 000 1010 | R/W  | Buck4 Buck/LDO Mode Output Voltage:<br>Offset = 0.8V<br>Step = 10mV<br>Max = 2.0V<br>1111000 ~1111111: 2.0V<br>Output voltage = 0.8V + DEC(0x3D[6:0]) × 10mV |

## REG0x3E: LDO\_CFG\_REG0

Basic Non-Volatile

| BITS | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                                                          |
|------|-------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | L1_ILIM_SET | 1       | R/W  | Set LDO1 Current Limit<br>0 = 400mA<br>1 = 500mA (default)                                                                           |
| D[6] | L1_SS       | 1       | R/W  | Set LDO1 Soft-Start Time<br>0 = 55µs<br>1 = 100µs (default)                                                                          |
| D[5] | L1_MODE     | 0       | R/W  | Set LDO1 mode at factory when GPIO4 is not set as B4/L1 operation mode and voltage select.<br>0 = LDO mode (default)<br>1 = LSW mode |
| D[4] | L2_ILIM_SET | 1       | R/W  | Set LDO2 Current Limit<br>0 = 400mA<br>1 = 500mA (default)                                                                           |
| D[3] | L2_SS       | 1       | R/W  | Set LDO2 Soft-Start Time<br>0 = 55µs<br>1 = 100µs (default)                                                                          |
| D[2] | L2_MODE     | 0       | R/W  | Set LDO2 mode at factory when GPIO6 is not set as L2 operation mode select.<br>0 = LDO mode (default)<br>1 = LSW mode                |
| D[1] | L1_OVP_EN   | 0       | RW   | 0 = Disable LDO1 OVP function (default)<br>1 = Enable LDO1 OVP function                                                              |
| D[0] | L2_OVP_EN   | 0       | RW   | 0 = Disable LDO2 OVP function (default)<br>1 = Enable LDO2 OVP function                                                              |

## REGISTER MAPS (continued)

## REG0x3F: LDO\_CFG\_REG1

Basic Non-Volatile

| BITS   | BIT NAME         | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                             |
|--------|------------------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:5] | L1_WAKEUP_DLY    | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set LDO1 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[4:2] | L2_WAKEUP_DLY    | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set LDO2 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[1]   | EN_DISCHG_L1_OVP | 1       | RW   | 0 = Disable discharge resistor when LDO1 OVP<br>1 = Enable discharge resistor when LDO1 OVP (default)                                                                                   |
| D[0]   | EN_DISCHG_L2_OVP | 1       | RW   | 0 = Disable discharge resistor when LDO2 OVP<br>1 = Enable discharge resistor when LDO2 OVP (default)                                                                                   |

## REG0x40: L1\_VSET0\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                             |
|--------|----------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved | 10      | R/W  | Reserved                                                                                                                                |
| D[5:0] | L1_VSET0 | 01 0000 | R/W  | LDO1 Output Voltage:<br>Offset = 1V<br>Step = 50mV<br>Max = 2.7V<br>100010 ~111111: 2.7V<br>Output voltage = 1V + DEC(0x40[5:0]) × 50mV |

## REG0x41: L1\_VSET1\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                             |
|--------|----------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved | 00      | R/W  | Reserved                                                                                                                                |
| D[5:0] | L1_VSET1 | 01 0000 | R/W  | LDO1 Output Voltage:<br>Offset = 1V<br>Step = 50mV<br>Max = 2.7V<br>100010 ~111111: 2.7V<br>Output voltage = 1V + DEC(0x41[5:0]) × 50mV |

## REGISTER MAPS (continued)

## REG0x42: L2\_VSET\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                             |
|--------|----------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| D[7:6] | Reserved | 10      | R/W  | Reserved                                                                                                                                |
| D[5:0] | L2_VSET  | 01 0000 | R/W  | LDO2 Output Voltage:<br>Offset = 1V<br>Step = 50mV<br>Max = 2.7V<br>100010 ~111111: 2.7V<br>Output voltage = 1V + DEC(0x42[5:0]) × 50mV |

## REG0x43: EN\_CTRL\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                     |
|--------|----------|---------|------|-------------------------------------------------|
| D[7]   | B1_EN    | 1       | R/W  | 0 = Buck1 disable<br>1 = Buck1 enable (default) |
| D[6]   | B2_EN    | 1       | R/W  | 0 = Buck2 disable<br>1 = Buck2 enable (default) |
| D[5]   | B3_EN    | 1       | R/W  | 0 = Buck3 disable<br>1 = Buck3 enable (default) |
| D[4]   | B4_EN    | 1       | R/W  | 0 = Buck4 disable<br>1 = Buck4 enable (default) |
| D[3]   | L1_EN    | 1       | R/W  | 0 = LDO1 disable<br>1 = LDO1 enable (default)   |
| D[2]   | L2_EN    | 1       | R/W  | 0 = LDO2 disable<br>1 = LDO2 enable (default)   |
| D[1:0] | Reserved | 01      | R/W  | Reserved                                        |

## REG0x44: DISCH\_CTRL\_REG0

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                           |
|--------|----------|---------|------|---------------------------------------------------------------------------------------|
| D[7]   | B1_DISCH | 1       | R/W  | 0 = Disable Buck1 discharge resistor<br>1 = Enable Buck1 discharge resistor (default) |
| D[6]   | B2_DISCH | 1       | R/W  | 0 = Disable Buck2 discharge resistor<br>1 = Enable Buck2 discharge resistor (default) |
| D[5]   | B3_DISCH | 1       | R/W  | 0 = Disable Buck3 discharge resistor<br>1 = Enable Buck3 discharge resistor (default) |
| D[4]   | B4_DISCH | 1       | R/W  | 0 = Disable Buck4 discharge resistor<br>1 = Enable Buck4 discharge resistor (default) |
| D[3]   | L1_DISCH | 1       | R/W  | 0 = Disable LDO1 discharge resistor<br>1 = Enable LDO1 discharge resistor (default)   |
| D[2]   | L2_DISCH | 1       | R/W  | 0 = Disable LDO2 discharge resistor<br>1 = Enable LDO2 discharge resistor (default)   |
| D[1:0] | Reserved | 01      | R/W  | Reserved                                                                              |

## REGISTER MAPS (continued)

## REG0x45: DISCH\_CTRL\_REG1

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                              |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------|
| D[7:6] | B1_DISCH_SET | 01      | R/W  | Set Buck1 Discharge Resistance.<br>00 = 5Ω<br>01 = 10Ω (default)<br>10 = 20Ω<br>11 = 40Ω |
| D[5:4] | B2_DISCH_SET | 00      | R/W  | Set Buck2 Discharge Resistance.<br>00 = 5Ω (default)<br>01 = 10Ω<br>10 = 20Ω<br>11 = 40Ω |
| D[3:2] | B3_DISCH_SET | 01      | R/W  | Set Buck3 Discharge Resistance.<br>00 = 5Ω<br>01 = 10Ω (default)<br>10 = 20Ω<br>11 = 40Ω |
| D[1:0] | B4_DISCH_SET | 01      | R/W  | Set Buck4 Discharge Resistance.<br>00 = 5Ω<br>01 = 10Ω (default)<br>10 = 20Ω<br>11 = 40Ω |

## REG0x46: DISCH\_CTRL\_REG2

Basic Non-Volatile

| BITS   | BIT NAME     | DEFAULT | TYPE | DESCRIPTION                                                                              |
|--------|--------------|---------|------|------------------------------------------------------------------------------------------|
| D[7:6] | L1_DISCH_SET | 01      | R/W  | Set LDO1 Discharge Resistance.<br>00 = 10Ω<br>01 = 20Ω (default)<br>10 = 40Ω<br>11 = 80Ω |
| D[5:4] | L2_DISCH_SET | 01      | R/W  | Set LDO2 Discharge Resistance.<br>00 = 10Ω<br>01 = 20Ω (default)<br>10 = 40Ω<br>11 = 80Ω |
| D[3:0] | Reserved     | 0101    | R/W  | Reserved                                                                                 |

## REG0x47: LPM\_CTRL\_REG

Basic Non-Volatile

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                            |
|--------|----------|---------|------|----------------------------------------|
| D[7]   | B1_LPM   | 0       | R/W  | 0 = PSM mode (default)<br>1 = LPM mode |
| D[6]   | B2_LPM   | 0       | R/W  | 0 = PSM mode (default)<br>1 = LPM mode |
| D[5]   | B3_LPM   | 0       | R/W  | 0 = PSM mode (default)<br>1 = LPM mode |
| D[4]   | B4_LPM   | 0       | R/W  | 0 = PSM mode (default)<br>1 = LPM mode |
| D[3]   | L1_LPM   | 0       | R/W  | 0 = PSM mode (default)<br>1 = LPM mode |
| D[2]   | L2_LPM   | 0       | R/W  | 0 = PSM mode (default)<br>1 = LPM mode |
| D[1:0] | Reserved | 10      | R/W  | Reserved                               |

## REGISTER MAPS (continued)

## REG0x48: SLEEP\_CTRL\_REG

Basic Non-Volatile

| BITS | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                            |
|------|-------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | B1_ON_SLEEP | 1       | R/W  | 0 = Buck1 turns off when PMIC enters SLEEP mode.<br>1 = Buck1 stays on and enters LPM mode when PMIC enters SLEEP mode. (default)                                      |
| D[6] | B2_ON_SLEEP | 1       | R/W  | 0 = Buck2 turns off when PMIC enters SLEEP mode.<br>1 = Buck2 stays on and enters LPM mode when PMIC enters SLEEP mode. (default)                                      |
| D[5] | B3_ON_SLEEP | 1       | R/W  | 0 = Buck3 turns off when PMIC enters SLEEP mode.<br>1 = Buck3 stays on and enters LPM mode when PMIC enters SLEEP mode. (default)                                      |
| D[4] | B4_ON_SLEEP | 0       | R/W  | 0 = Buck4 turns off when PMIC enters SLEEP mode. (default)<br>1 = Buck4 stays on and enters LPM mode when PMIC enters SLEEP mode.                                      |
| D[3] | L1_ON_SLEEP | 1       | R/W  | 0 = LDO1 turns off when PMIC enters SLEEP mode.<br>1 = LDO1 stays on and enters LPM mode when PMIC enters SLEEP mode. (default)                                        |
| D[2] | L2_ON_SLEEP | 1       | R/W  | 0 = LDO2 turns off when PMIC enters SLEEP mode.<br>1 = LDO2 stays on and enters LPM mode when PMIC enters SLEEP mode. (default)                                        |
| D[1] | SLEEP_EN    | 0       | R/W  | 0 = PMIC is in normal mode, if DPSLP_EN is also 0. (default)<br>1 = PMIC is in SLEEP mode and all rails follow the settings in this register to turn off or enter LPM. |
| D[0] | Reserved    | 0       | R/W  | Reserved                                                                                                                                                               |

## REG0x49: DPSLP\_CTRL\_REG

Basic Non-Volatile

| BITS | BIT NAME    | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                            |
|------|-------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | B1_ON_DPSLP | 0       | R/W  | 0 = Buck1 turns off when PMIC enters DPSLP mode. (default)<br>1 = Buck1 stays on and enters LPM mode when PMIC enters DPSLP mode.                                      |
| D[6] | B2_ON_DPSLP | 0       | R/W  | 0 = Buck2 turns off when PMIC enters DPSLP mode. (default)<br>1 = Buck2 stays on and enters LPM mode when PMIC enters DPSLP mode.                                      |
| D[5] | B3_ON_DPSLP | 1       | R/W  | 0 = Buck3 turns off when PMIC enters DPSLP mode.<br>1 = Buck3 stays on and enters LPM mode when PMIC enters DPSLP mode. (default)                                      |
| D[4] | B4_ON_DPSLP | 1       | R/W  | 0 = Buck4 turns off when PMIC enters DPSLP mode.<br>1 = Buck4 stays on and enters LPM mode when PMIC enters DPSLP mode. (default)                                      |
| D[3] | L1_ON_DPSLP | 1       | R/W  | 0 = LDO1 turns off when PMIC enters DPSLP mode.<br>1 = LDO1 stays on and enters LPM mode when PMIC enters DPSLP mode. (default)                                        |
| D[2] | L2_ON_DPSLP | 1       | R/W  | 0 = LDO2 turns off when PMIC enters DPSLP mode.<br>1 = LDO2 stays on and enters LPM mode when PMIC enters DPSLP mode. (default)                                        |
| D[1] | DPSLP_EN    | 0       | R/W  | 0 = PMIC is in normal mode, if SLEEP_EN is also 0. (default)<br>1 = PMIC is in DPSLP mode and all rails follow the settings in this register to turn off or enter LPM. |
| D[0] | Reserved    | 0       | R/W  | Reserved                                                                                                                                                               |

## REGISTER MAPS (continued)

## REG0x4A: B1\_TIME\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                           |
|--------|------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B1_ON_DLY  | 0100    | R/W  | Offset = 0ms<br>Step = 0.5ms<br>Delay time = DEC(0x4A[7:4]) × 0.5ms<br>Set Buck1 turn-on delay time between the SYSMON and when it starts to turn on.                                                 |
| D[3:1] | B1_OFF_DLY | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck1 turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS. |
| D[0]   | Reserved   | 0       | R/W  | Reserved                                                                                                                                                                                              |

## REG0x4B: B2\_TIME\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                           |
|--------|------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B2_ON_DLY  | 0100    | R/W  | Offset = 0ms<br>Step = 0.5ms<br>Delay time = DEC(0x4B[7:4]) × 0.5ms<br>Set Buck2 turn-on delay time between the SYSMON and when it starts to turn on.                                                 |
| D[3:1] | B2_OFF_DLY | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck2 turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS. |
| D[0]   | Reserved   | 0       | R/W  | Reserved                                                                                                                                                                                              |

## REG0x4C: B3\_TIME\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                           |
|--------|------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B3_ON_DLY  | 0010    | R/W  | Offset = 0ms<br>Step = 0.5ms<br>Delay time = DEC(0x4C[7:4]) × 0.5ms<br>Set Buck3 turn-on delay time between the SYSMON and when it starts to turn on.                                                 |
| D[3:1] | B3_OFF_DLY | 100     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms (default)<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck3 turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS. |
| D[0]   | Reserved   | 1       | R/W  | Reserved                                                                                                                                                                                              |

## REGISTER MAPS (continued)

## REG0x4D: B4\_TIME\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                           |
|--------|------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | B4_ON_DLY  | 0011    | R/W  | Offset = 0ms<br>Step = 0.5ms<br>Delay time = DEC(0x4D[7:4]) × 0.5ms<br>Set Buck4 turn-on delay time between the SYSMON and when it starts to turn on.                                                 |
| D[3:1] | B4_OFF_DLY | 000     | R/W  | 000 = 0ms (default)<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck4 turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS. |
| D[0]   | Reserved   | 1       | R/W  | Reserved                                                                                                                                                                                              |

## REG0x4E: L1\_TIME\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                          |
|--------|------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | L1_ON_DLY  | 0001    | R/W  | Offset = 0ms<br>Step = 0.5ms<br>Delay time = DEC(0x4E[7:4]) × 0.5ms<br>Set LDO1 turn-on delay time between the SYSMON and when it starts to turn on.                                                 |
| D[3:1] | L1_OFF_DLY | 100     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms (default)<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set LDO1 turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS. |
| D[0]   | Reserved   | 0       | R/W  | Reserved                                                                                                                                                                                             |

## REG0x4F: L2\_TIME\_REG

Basic Non-Volatile

| BITS   | BIT NAME   | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                          |
|--------|------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | L2_ON_DLY  | 0001    | R/W  | Offset = 0ms<br>Step = 0.5ms<br>Delay time = DEC(0x4F[7:4]) × 0.5ms<br>Set LDO2 turn-on delay time between the SYSMON and when it starts to turn on.                                                 |
| D[3:1] | L2_OFF_DLY | 100     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms (default)<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set LDO2 turn-off delay time when entering SLEEP or DPSLP mode, or PWRDIS. |
| D[0]   | Reserved   | 0       | R/W  | Reserved                                                                                                                                                                                             |

## REGISTER MAPS (continued)

## REG0x50: WAKEUP\_DLY\_GPIO3\_REG0

Basic Non-Volatile

| BITS   | BIT NAME              | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                              |
|--------|-----------------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:5] | B1_WAKEUP_DLY_GPIO3_H | 101     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms (default)<br>110 = 4ms<br>111 = 8ms<br>Set Buck1 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[4:2] | B1_WAKEUP_DLY_GPIO3_L | 100     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms (default)<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck1 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[1:0] | Reserved              | 00      | R    | Reserved                                                                                                                                                                                 |

## REG0x51: WAKEUP\_DLY\_GPIO3\_REG1

Basic Non-Volatile

| BITS   | BIT NAME              | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                              |
|--------|-----------------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:5] | B2_WAKEUP_DLY_GPIO3_H | 100     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms (default)<br>101 = 2ms<br>110 = 4ms<br>111 = 8ms<br>Set Buck2 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[4:2] | B2_WAKEUP_DLY_GPIO3_L | 101     | R/W  | 000 = 0ms<br>001 = 0.25ms<br>010 = 0.5ms<br>011 = 0.75ms<br>100 = 1ms<br>101 = 2ms (default)<br>110 = 4ms<br>111 = 8ms<br>Set Buck2 wake-up delay time when exiting SLEEP or DPSLP mode. |
| D[1:0] | Reserved              | 00      | R    | Reserved                                                                                                                                                                                 |

## REG0x52: PWRDIS\_REG

Basic Non-Volatile

| BITS   | BIT NAME        | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                          |
|--------|-----------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:3] | Reserved        | 00000   | R    | Reserved                                                                                                                                                                                                                                             |
| D[2:0] | PWRDIS_DLY_TIME | 000     | R/W  | PMIC will enter power-off sequence with the delay time after the high level detected PWRDIS signal.<br>000 = 0ms (default)<br>001 = 0.5ms<br>010 = 1.0ms<br>011 = 2.0ms<br>100 = 4.0ms<br>101 = 8.0ms<br>110 = 16ms<br>111 = disable PWRDIS function |

## APPLICATION INFORMATION

## Layout Guide

PCB is an essential element of any switching power supply. The converter operation can be significantly disturbed due to the existence of the large and fast rising/falling voltages that can couple through stray capacitances to other signal paths, and also due to the large and fast changing currents that can interact through parasitic magnetic couplings, unless those interferences are minimized and properly managed in the layout design. Insufficient conductance in copper traces for the high current paths results in high resistive losses in the power paths and voltage errors. The following guidelines provided here are necessary to design a good layout:

1. Bypass VIN\_Bx pin to GND pin with low-ESR ceramic capacitors (X5R or X7R better dielectric) placed as close as possible to VIN\_Bx pin on the top layer eliminates the need for vias. Refer to the pin descriptions for the specific VIN\_Bx and PGNDx pins of each buck converter.

2. Keep the switch node trace between each SW\_Bx pin and the inductor as short as possible. For optimal routing, run this trace between the pads of the input capacitor. Using 0805-sized input capacitors is recommended. Avoid placing sensitive analog signal traces near these high-frequency, high dV/dt nodes to minimize noise interference.

3. Position the LDO input capacitor near the VIN\_LDO1/AVIN pin, ensuring a direct connection to

VIN\_LDO1/AVIN and AGND on the top layer for optimal performance.

4. Place the Buck output capacitors close to the inductor, ensuring direct connections with short, wide traces to both the inductor and ground plane. The output capacitor ground should be tightly linked to the input capacitor ground. Use multiple vias if necessary to maintain low impedance.

5. Each FB\_Bx pin should be Kelvin connected to its output capacitor using the shortest possible trace while maintaining adequate distance from switching nodes to minimize noise injection. The IC regulates the output voltage based on this Kelvin connection.

6. The PGNDx and AGND pins must be electrically connected. Since the AGND plane serves as the ground for analog, digital, and LDO circuits, full isolation from other PCB grounds is not required. However, ensure that Buck converter switching currents do not flow through the analog ground connections to prevent interference. Connect the AGND and PGND pins to the ground planes using vias placed next to the bypass capacitors for optimal grounding.

7. Ensure that all open-drain outputs have appropriate pull-up resistors.

8. Figure 19 illustrates the recommended power and signal connections, as well as the routing beneath the IC. For a detailed routing example, refer to the SGM260421 evaluation kit.

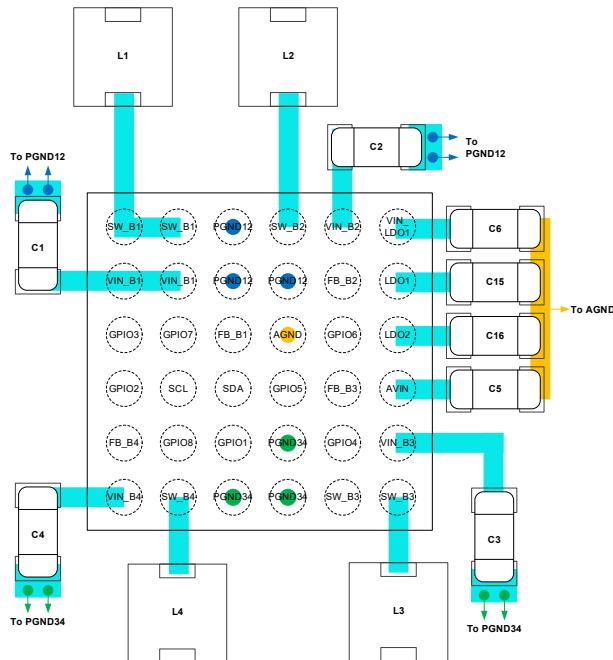
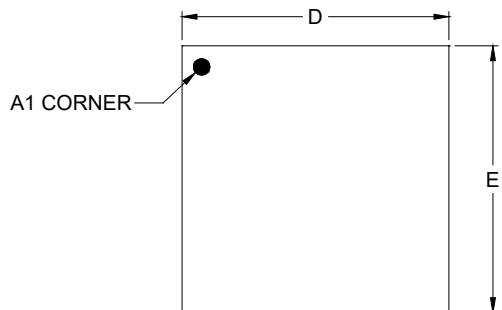
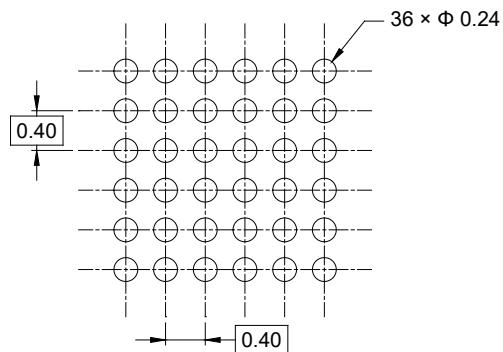



Figure 19. Recommended Layout

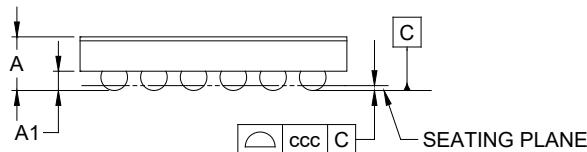
**REVISION HISTORY**


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

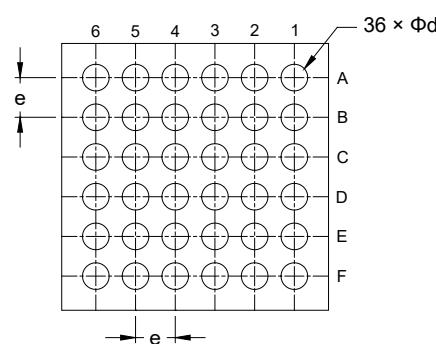
| <b>Changes from Original to REV.A (DECEMBER 2025)</b> | <b>Page</b> |
|-------------------------------------------------------|-------------|
| Changed from product preview to production data.....  | All         |


# PACKAGE INFORMATION

## PACKAGE OUTLINE DIMENSIONS


### WLCSP-2.69x2.69-36B




TOP VIEW



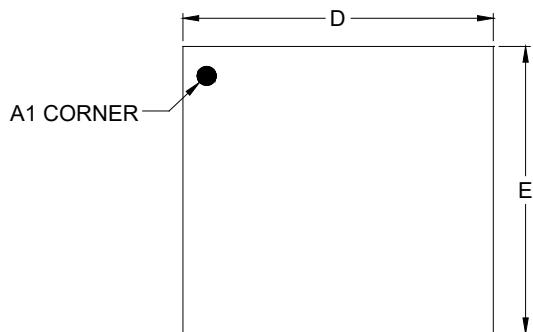
RECOMMENDED LAND PATTERN (Unit: mm)



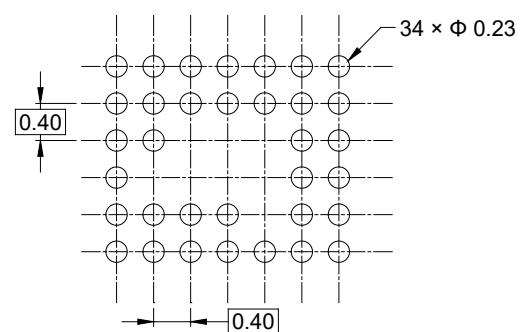
SIDE VIEW



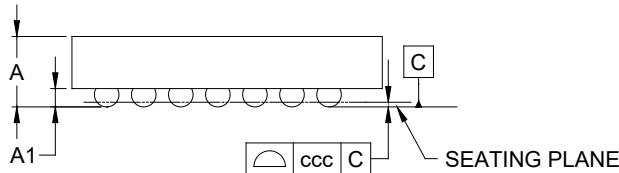
BOTTOM VIEW


| Symbol | Dimensions In Millimeters |     |       |
|--------|---------------------------|-----|-------|
|        | MIN                       | NOM | MAX   |
| A      | -                         | -   | 0.585 |
| A1     | 0.174                     | -   | 0.214 |
| D      | 2.658                     | -   | 2.718 |
| E      | 2.658                     | -   | 2.718 |
| d      | 0.238                     | -   | 0.298 |
| e      | 0.400 BSC                 |     |       |
| ccc    | 0.050                     |     |       |

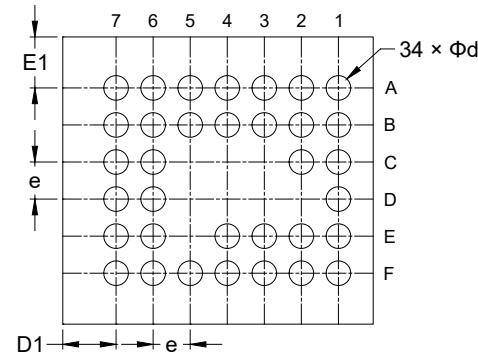
NOTE: This drawing is subject to change without notice.


## PACKAGE INFORMATION

### PACKAGE OUTLINE DIMENSIONS


#### FOCSP-3.35x3.1-34B




TOP VIEW



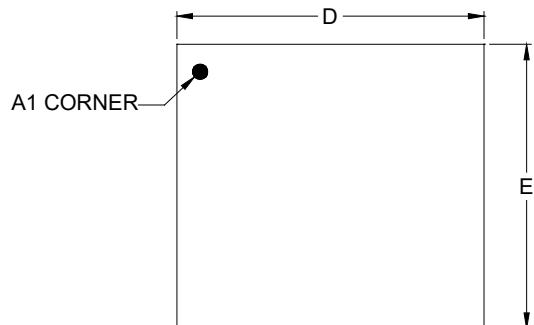
RECOMMENDED LAND PATTERN (Unit: mm)



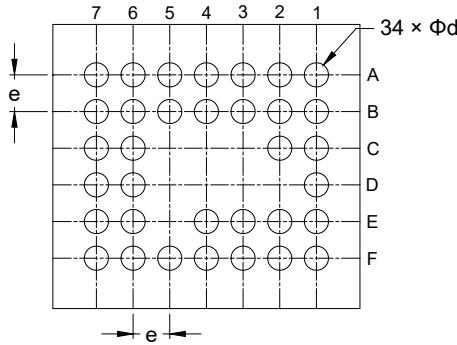
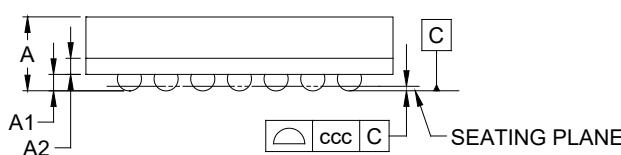
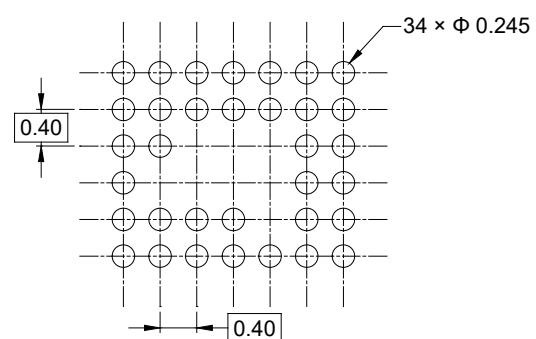
SIDE VIEW



BOTTOM VIEW


| Symbol | Dimensions In Millimeters |     |       |
|--------|---------------------------|-----|-------|
|        | MIN                       | NOM | MAX   |
| A      | -                         | -   | 0.810 |
| A1     | 0.178                     | -   | 0.218 |
| D      | 3.300                     | -   | 3.400 |
| D1     | 0.575 REF                 |     |       |
| E      | 3.050                     | -   | 3.150 |
| E1     | 0.550 REF                 |     |       |
| d      | 0.235                     | -   | 0.295 |
| e      | 0.400 BSC                 |     |       |
| ccc    | 0.050                     |     |       |

NOTE: This drawing is subject to change without notice.




# PACKAGE INFORMATION

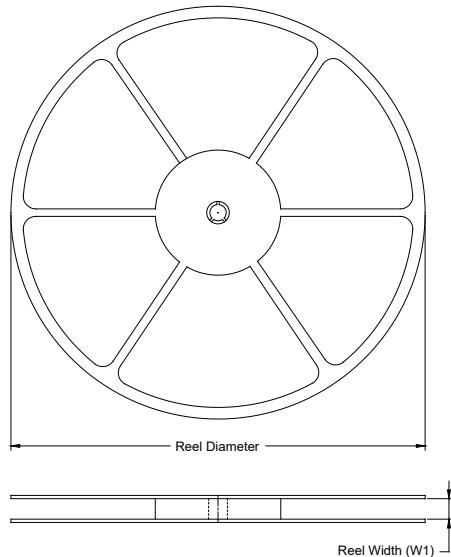
## PACKAGE OUTLINE DIMENSIONS

### TBGA-3.35x3.1-34B

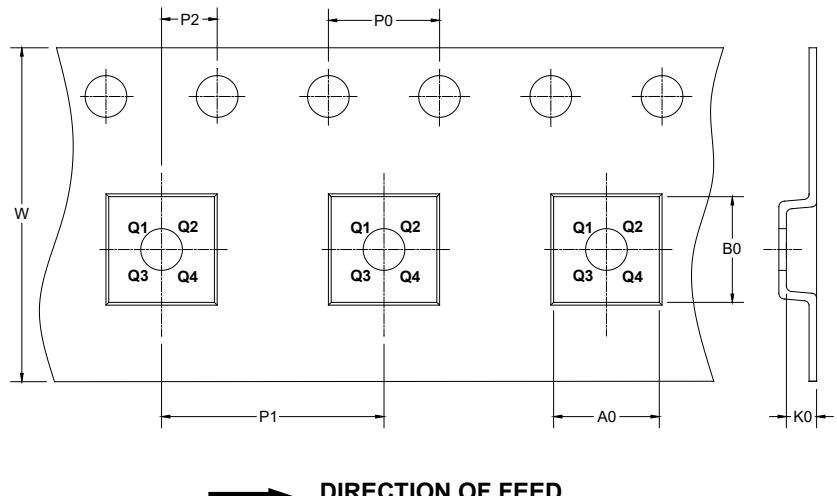


TOP VIEW




| Symbol | Dimensions In Millimeters |     |       |
|--------|---------------------------|-----|-------|
|        | MIN                       | NOM | MAX   |
| A      | -                         | -   | 0.900 |
| A1     | 0.130                     | -   | 0.230 |
| A2     | 0.176 REF                 |     |       |
| D      | 3.250                     | -   | 3.450 |
| E      | 3.000                     | -   | 3.200 |
| d      | 0.213                     | -   | 0.313 |
| e      | 0.400 BSC                 |     |       |
| ccc    | 0.080                     |     |       |

NOTE: This drawing is subject to change without notice.


# PACKAGE INFORMATION

## TAPE AND REEL INFORMATION

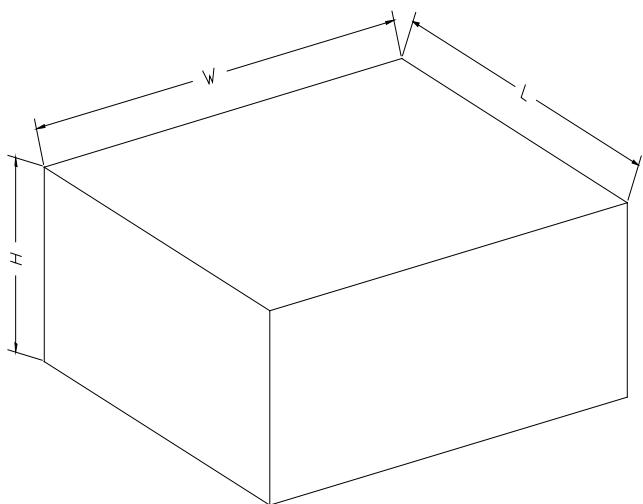
### REEL DIMENSIONS



### TAPE DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.


### KEY PARAMETER LIST OF TAPE AND REEL

| Package Type        | Reel Diameter | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P0 (mm) | P1 (mm) | P2 (mm) | W (mm) | Pin1 Quadrant |
|---------------------|---------------|--------------------|---------|---------|---------|---------|---------|---------|--------|---------------|
| WLCSP-2.69×2.69-36B | 7"            | 9.5                | 2.90    | 2.90    | 0.75    | 4.0     | 4.0     | 2.0     | 8.0    | Q1            |
| FOCSP-3.35×3.1-34B  | 13"           | 12.4               | 3.28    | 3.54    | 0.96    | 4.0     | 8.0     | 2.0     | 12.0   | Q2            |
| TBGA-3.35×3.1-34B   | 13"           | 12.4               | 3.40    | 3.65    | 1.15    | 4.0     | 8.0     | 2.0     | 12.0   | Q2            |

DD001

## PACKAGE INFORMATION

### CARTON BOX DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

### KEY PARAMETER LIST OF CARTON BOX

| Reel Type   | Length (mm) | Width (mm) | Height (mm) | Pizza/Carton |
|-------------|-------------|------------|-------------|--------------|
| 7" (Option) | 368         | 227        | 224         | 8            |
| 7"          | 442         | 410        | 224         | 18           |
| 13"         | 386         | 280        | 370         | 5            |

DD0002