

SGM2904 Dual Operational Amplifier

GENERAL DESCRIPTION

The SGM2904 is a dual operational amplifier, which is optimized for high voltage operation from 3.3V to 26V single supply or ±1.65V to ±13V dual power supplies. It provides a wide input common mode voltage range and rail-to-rail output voltage swing.

Furthermore, the SGM2904 provides low noise, low bias current, low offset current, low offset voltage and high slew rate.

The SGM2904 is available in Green SOIC-8 and MSOP-8 packages. It is specified over the extended -40°C to +125°C temperature range.

FEATURES

- Low Offset Voltage: 4mV (MAX)
- Low Input Bias Current
- Low Input Offset Current
- Low Noise: 40nV/√Hz at 1kHz
- Wide Input Common Mode and Differential Voltage Ranges
- High Input Impedance
- Output Short-Circuit Protection
- Gain-Bandwidth Product: 2MHz
- Slew Rate: 0.6V/µs
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-8 and MSOP-8 Packages

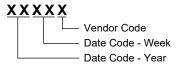
APPLICATIONS

High Impedance Sensor

Photodiode Amplifier

Professional Audio Instrument

DAC Output Amplifier


Medical Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2904	SOIC-8	-40°C to +125°C	SGM2904XS8G/TR	SGM 2904XS8 XXXXX	Tape and Reel, 4000
3GM2904	MSOP-8	-40°C to +125°C	SGM2904XMS8G/TR	SGM2904 XMS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S 26V
Input/Output Voltage Range(- V_S) - 0.3 V to (+ V_S) + 0.3 V
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM6000V
MM400V
CDM 2000V

RECOMMENDED OPERATING CONDITIONS

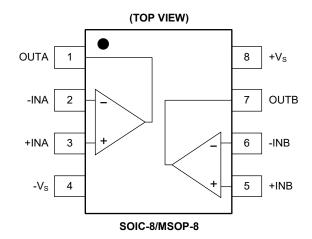
Operating Temperature Range.....-40°C to +125°C

NOTE

1. It is recommended that CMOS device adopts the proper power supply sequence. Always sort the V_S first, followed by the inputs and outputs.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

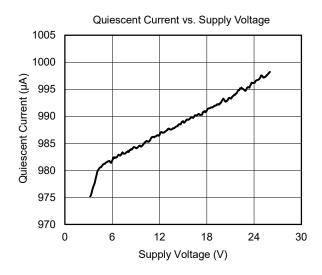

ESD SENSITIVITY CAUTION

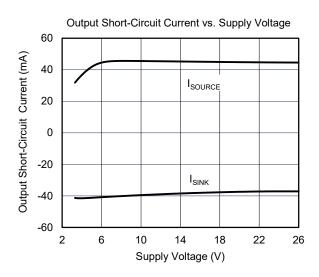
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

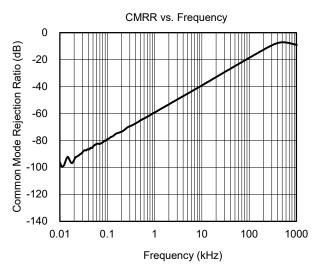
DISCLAIMER

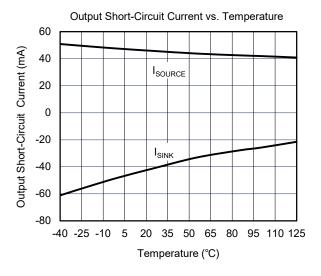
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

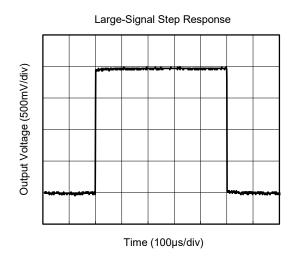
PIN CONFIGURATIONS

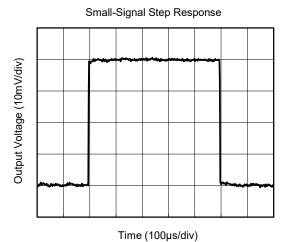

ELECTRICAL CHARACTERISTICS


 $(V_S = 3.3V \text{ to } 26V \text{ and } R_L = 2k\Omega \text{ connected to } V_S/2, \text{ Full} = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$


PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristics					•		•
Input Offset Voltage		V V (0	+25°C		3	4	mV
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	Full			5	IIIV
Input Offset Voltage Drift	ΔV _{OS} /ΔΤ		Full		2		μV/°C
Input Bias Current	I _B	$V_{CM} = V_S/2$	+25°C		20		nA
Input Offset Current	Ios	V _{CM} = V _S /2	+25°C		2		nA
Maximum Differential Input Voltage	IV _{ID} I		Full			Vs	V
Maximum lanut Difference Bios Compat		V - 20V	+25°C		2	3	
Maximum Input Difference Bias Current	II _{ID} I	V _{ID} = 26V	Full			4	μA
Input Common Mode Voltage Range	V_{CM}		Full	0		V _S - 1.5	V
Ossessa Mada Baisatian Batis	OMPD	V 5V4-00V 0V 1V 1V 1V 15V	+25°C	70	80		J.D.
Common Mode Rejection Ratio	CMRR	$V_S = 5V \text{ to } 26V, 0V < V_{CM} < V_S - 1.5V$	Full	65			- dB
On and Large Maltage Only		V 45VV 4V4-44V	+25°C	30	100) (/) (
Open-Loop Voltage Gain	A _{OL}	$V_S = 15V$, $V_{OUT} = 1V$ to 11V	Full	20			V/mV
Output Characteristics							
	V _{ОН}	$V_S = 26V$, $R_L = 10k\Omega$	+25°C		60	80	
15.1.1.1.0.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			Full			120] ,
High-Level Output Voltage		$V_S = 26V$, $R_L = 2k\Omega$	+25°C		300	400	mV
			Full			540	
	V _{OL}	V 00V D 40V0	+25°C		20	35	mV
Land Land Outsid Valle in		$V_S = 26V, R_L = 10k\Omega$	Full			60	
Low-Level Output Voltage		V 20V D 010	+25°C		110	160	
		$V_S = 26V, R_L = 2k\Omega$	Full			280	
Output Short-Circuit Current	I _{sc}	V _S = 5V to 26V	+25°C	±28	±40		mA
Power Supply							
Operating Voltage Range	Vs		Full	3.3		26	V
Quiescent Current	la	I _{OUT} = 0A	+25°C		1	1.24	mA
Quiescent ounent	iq	1001 - 07	Full			1.5	IIIA
Power Supply Rejection Ratio	PSRR	V _s = 5V to 26V	+25°C	90	100		dB
		V5 - 0V 10 20V		85			
Dynamic Performance	Т	T	, ı			1	1
Gain-Bandwidth Product	GBP	C _L = 50pF	+25°C		2		MHz
Slew Rate	SR	G = +1	+25°C		0.6		V/µs
Input Voltage Noise Density	e _n	f = 1kHz	+25°C		40		nV/√Hz


TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, V_S = 26V and R_L = 2k Ω , unless otherwise noted.



APPLICATION INFORMATION

The SGM2904 can be widely used for various signal processing purposes.

Typical Application

The following circuit is an application of an inverting amplifier. To explain, the input is positive while the output is negative. However, if the input signal is negative, the output will be positive as well.

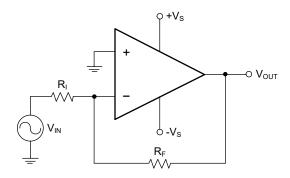


Figure 1. Application Schematic

The supply voltage range should always be larger than the input and the output range. The following example scales a signal with ±0.5V to ±1.8V, which means that the ±12V of the supply voltage is sufficient.

The following equations determine the voltage gain of the inverting amplifier circuit.

$$G = \frac{V_{OUT}}{V_{IN}} \tag{1}$$

$$G = \frac{V_{\text{OUT}}}{V_{\text{IN}}}$$
 (1)
$$G = \frac{1.8}{-0.5} = -3.6$$
 (2)

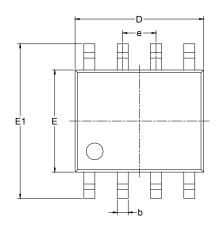
After setting the voltage gain, the value of the gain and feedback resistors should be determined as well. Since the operating current inside the circuit is in the mA range, the R_I and R_F should be at the level of $k\Omega$. In this example, the R_I is $10k\Omega$ and the R_F is $36k\Omega$.

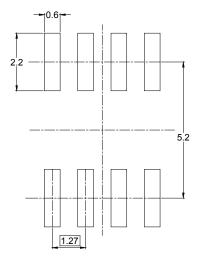
$$G = -\frac{R_F}{R_i} \tag{3}$$

SGM2904

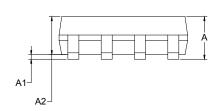
Dual Operational Amplifier

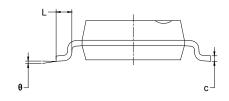
REVISION HISTORY

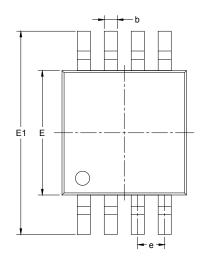

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

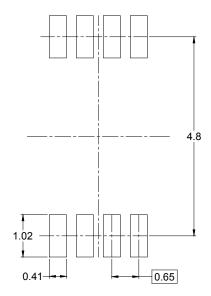

Changes from Original (DECEMBER 2017) to REV.A

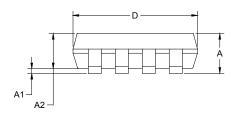
Page

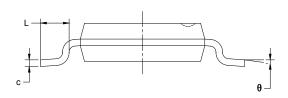



PACKAGE OUTLINE DIMENSIONS SOIC-8


RECOMMENDED LAND PATTERN (Unit: mm)




Symbol		nsions meters	Dimensions In Inches			
,	MIN	MAX	MIN	MAX		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.27 BSC		0.050	BSC		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

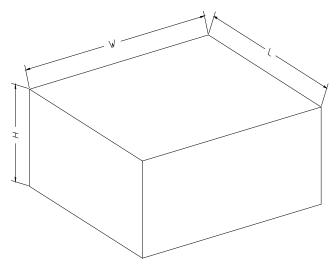

PACKAGE OUTLINE DIMENSIONS MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.250	0.380	0.010	0.015		
С	0.090	0.230	0.004	0.009		
D	2.900	3.100	0.114	0.122		
Е	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
е	0.650 BSC		0.026	BSC		
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	