SG6601
Low-Power DC-DC Step-Up Converter

GENERAL DESCRIPTION

The SGM6601 is a high-frequency boost converter dedicated for small to medium LCD bias supply and white LED backlight supplies. The device is ideal to generate output voltages up to 38V from a dual cell NiMH/NiCd or a single cell Li-ion battery. The part can also be used to generate standard 3.3V/5V to 12V power conversions.

The SGM6601 operates with a switching frequency up to 1MHz. This allows the use of small external components using ceramic as well as tantalum output capacitors. Together with the small package, the SGM6601 gives a very small overall solution size. The SGM6601 has an internal 400mA switch current limit, offering low output voltage ripple and allows the use of a small form factor inductor for low power applications. The low quiescent current (20μA TYP) together with an optimized control scheme, allows device operation at very high efficiencies over the entire load current range.

The SGM6601 is available in TDFN-2x2-6L and TSOT-23-5 packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Input Voltage Range: 1.8V to 5.5V
- Adjustable Output Voltage Range up to 38V
- 400mA Internal Switch Current
- Up to 1MHz Switching Frequency
- 20μA Typical No-Load Quiescent Current
- 0.1μA Typical Shutdown Current
- Internal Soft-Start Function
- -40°C to +85°C Operating Temperature Range
- Available in Green TSOT-23-5 and TDFN-2x2-6L Packages

APPLICATIONS

- LCD Bias Supply
- White-LED Supply for LCD Backlights
- Digital Still Camera
- PDAs, Organizers, and Handheld PCs
- Cellular Phones
- Internet Audio Player
- Standard 3.3V/5V to 12V Conversion

TYPICAL APPLICATION

![TYPICAL APPLICATION Diagram]
SGM6601 Low-Power DC-DC Step-Up Converter

PACKAGE/ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PIN-PACKAGE</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>ORDERING NUMBER</th>
<th>PACKAGE MARKING</th>
<th>PACKAGE OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGM6601</td>
<td>TDFN-2×2-6L</td>
<td>-40°C to +85°C</td>
<td>SGM6601YTD6G/TR</td>
<td>6601 XXXX</td>
<td>Tape and Reel, 3000</td>
</tr>
<tr>
<td></td>
<td>TSOT-23-5</td>
<td>-40°C to +85°C</td>
<td>SGM6601YTN5G/TR</td>
<td>SG4XX</td>
<td>Tape and Reel, 3000</td>
</tr>
</tbody>
</table>

NOTE: XXXX = Date Code. XX = Date Code.

MARKING INFORMATION

SG4 X X

Date code - Month ("A" = Jan. "B" = Feb. ... "L" = Dec.)
Date code - Year ("A" = 2010, "B" = 2011 ...)
Chip I.D.

For example: SG4CA (2012, January)

ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage.. -0.3V to 6V
EN and FB Pin Voltages.. -0.3V to V_in
SW Switch Voltage.. 40V
Operating Temperature Range............................ -40°C to +85°C
Junction Temperature.. 150°C
Storage Temperature Range...................... -65°C to +150°C
Package Thermal Resistance
TDFN-2×2-6L, θ_JA.. 124°C/W
TSOT-23-5, θ_JA.. 250°C/W
Lead Temperature (Soldering, 10s) 260°C
ESD Susceptibility
HBM.. 4000V
MM.. 250V

NOTE:
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don’t pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.
PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>NAME</th>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TDFN-2×2-6L</td>
<td>TSOT-23-5</td>
</tr>
<tr>
<td>SW</td>
<td>6 1</td>
<td>Switch Pin. It is connected to the drain of the internal power MOSFET. Connect this pin to the inductor and Schottky diode.</td>
</tr>
<tr>
<td>GND</td>
<td>1 2</td>
<td>Ground.</td>
</tr>
<tr>
<td>FB</td>
<td>4 3</td>
<td>Feedback Pin. Connect this pin to the external voltage divider to program the desired output voltage.</td>
</tr>
<tr>
<td>EN</td>
<td>3 4</td>
<td>Enable Pin. Pulling this pin to ground forces the device into shutdown mode reducing the supply current to less than 1μA. This pin should not be left floating and needs to be terminated.</td>
</tr>
<tr>
<td>VIN</td>
<td>2 5</td>
<td>Power Supply. Must be closely decoupled to GND with a capacitor.</td>
</tr>
<tr>
<td>NC</td>
<td>5 —</td>
<td>No Connection.</td>
</tr>
<tr>
<td>Exposed Pad GND</td>
<td>—</td>
<td>Power Ground Exposed Pad. Must be connected to GND plane.</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

(V\textsubscript{IN} = 2.4V, EN = V\textsubscript{IN}, C\textsubscript{IN} = 4.7\,\mu F, C\textsubscript{OUT} = 1\,\mu F, L = 10\mu H, T\textsubscript{A} = -40°C to +85°C. Typical values are at T\textsubscript{A} = +25°C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V\textsubscript{IN}</td>
<td></td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>I\textsubscript{SD}</td>
<td>EN = GND</td>
<td>0.1</td>
<td>1</td>
<td>\mu A</td>
<td></td>
</tr>
<tr>
<td>Operating Quiescent Current</td>
<td>I\textsubscript{Q}</td>
<td>I\textsubscript{OUT} = 0mA, not switching, V\textsubscript{FB} = 1.3V</td>
<td>20</td>
<td>35</td>
<td>\mu A</td>
<td></td>
</tr>
<tr>
<td>Under-Voltage Lockout Threshold</td>
<td>V\textsubscript{UVLO}</td>
<td></td>
<td>1.5</td>
<td>1.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Input High Voltage</td>
<td>V\textsubscript{IH}</td>
<td></td>
<td>1.3</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>EN Input Low Voltage</td>
<td>V\textsubscript{IL}</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>EN Input Leakage Current</td>
<td>EN = GND or V\textsubscript{IN}</td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>\mu A</td>
<td></td>
</tr>
<tr>
<td>POWER SWITCH AND CURRENT LIMIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Switch Voltage</td>
<td>V\textsubscript{SW}</td>
<td></td>
<td>39</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Minimum Off Time</td>
<td>t\textsubscript{OFF}</td>
<td></td>
<td>270</td>
<td>430</td>
<td>570</td>
<td>ns</td>
</tr>
<tr>
<td>Maximum On Time</td>
<td>t\textsubscript{ON}</td>
<td></td>
<td>4</td>
<td>6</td>
<td>8.5</td>
<td>\mu s</td>
</tr>
<tr>
<td>MOSFET On-Resistance</td>
<td>R\textsubscript{DS(ON)}</td>
<td>V\textsubscript{IN} = 2.4V, I\textsubscript{SW} = 200mA</td>
<td>660</td>
<td>1100</td>
<td>m\Omega</td>
<td></td>
</tr>
<tr>
<td>MOSFET Leakage Current</td>
<td>V\textsubscript{SW} = 38V</td>
<td></td>
<td>1</td>
<td>\mu A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch Current Limit</td>
<td>I\textsubscript{LIM}</td>
<td></td>
<td>210</td>
<td>400</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustable Output Voltage Range</td>
<td>V\textsubscript{OUT}</td>
<td>V\textsubscript{IN} = 38V</td>
<td>1.202</td>
<td>1.229</td>
<td>1.253</td>
<td>V</td>
</tr>
<tr>
<td>Feedback Reference Voltage</td>
<td>V\textsubscript{FB}</td>
<td>TA = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Leakage Current</td>
<td>I\textsubscript{FB}</td>
<td>V\textsubscript{FB} = 1.3V</td>
<td></td>
<td></td>
<td></td>
<td>\mu A</td>
</tr>
<tr>
<td>Output Voltage Line Regulation</td>
<td>\Delta V\textsubscript{OUT}</td>
<td>V\textsubscript{IN} = 1.8V to 5.5V, V\textsubscript{OUT} = 18V, I\textsubscript{LOAD} = 10mA, C\textsubscript{FF} = not connected</td>
<td>0.04</td>
<td>%/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Load Regulation</td>
<td>V\textsubscript{IN} = 2.4V, V\textsubscript{OUT} = 18V, I\textsubscript{OUT} = 0mA to 30mA</td>
<td>0.15</td>
<td>%/mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs. Output Current

- Efficiency (%) vs. Output Current (mA)
- Values for different input voltages:
 - $V_{\text{IN}} = 5V$
 - $V_{\text{IN}} = 3.6V$
 - $V_{\text{IN}} = 2.4V$
 - Output $V_{\text{OUT}} = 18V$
 - Inductor $L = 10 \mu H$

Efficiency vs. Load Current

- Efficiency (%) vs. Load Current (mA)
- Values for different input voltages:
 - $V_{\text{IN}} = 3.6V$
 - Output $V_{\text{OUT}} = 18V$

Efficiency vs. Input Voltage

- Efficiency (%) vs. Input Voltage (V)
- Values for different load currents:
 - $I_{\text{OUT}} = 5mA$
 - $I_{\text{OUT}} = 10mA$
 - Inductor $L = 10 \mu H$
 - Output $V_{\text{OUT}} = 18V$

Quiescent Current vs. Input Voltage

- Quiescent Current (μA) vs. Input Voltage (V)
- No Switching
- Values for different temperatures:
 - +85°C
 - +25°C
 - -40°C

$R_{\text{DS(ON)}}$ vs. Temperature

- $R_{\text{DS(ON)}}$ (mΩ) vs. Temperature (°C)

Switch Current Limit vs. Temperature

- Switch Current Limit (mA) vs. Temperature (°C)
TYPICAL PERFORMANCE CHARACTERISTICS

Feedback Voltage vs. Temperature

![Graph showing Feedback Voltage vs. Temperature with VIN = 2.4V](image)

Start-Up

![Graph showing Start-Up with Vout = 18V](image)

Line Transient Response

![Graph showing Line Transient Response with VIN = 2.4V to 3.4V Vout = 18V](image)

Load Transient Response

![Graph showing Load Transient Response with Vout = 18V](image)
Figure 1. LCD Bias Supply
The SGM6601 operates with an input voltage range of 1.8V to 5.5V and can generate output voltages up to 38V. The device operates in a pulse-frequency-modulation (PFM) scheme with constant peak current control. This control scheme maintains high efficiency over the entire load current range, and with a switching frequency up to 1MHz, the device enables the use of very small external components.

The converter monitors the output voltage, and as soon as the feedback voltage falls below the reference voltage of typically 1.229V, the internal switch turns on and the current ramps up. The switch turns off as soon as the inductor current reaches the internally set peak current of typically 400mA. The second criteria that turns off the switch is the maximum on time of 6μs (TYP). This is just to limit the maximum time of the converter to cover for extreme conditions. As the switch is turned off the external Schottky diode is forward biased delivering the current to the output. The switch remains off for a minimum of 430ns (TYP), or until the feedback voltage drops below the reference voltage again. Using this PFM peak current control scheme the converter operates in discontinuous conduction mode (DCM) where the switching frequency depends on the output current, which results in very high efficiency over the entire load current range. This regulation scheme is inherently stable, allowing a wider selection range for the inductor and output capacitor.

Peak Current Control

The internal switch turns on until the inductor current reaches the typical DC current limit (I_{LIM}) of 400mA. Due to the internal propagation delay of typically 100ns, the actual current exceeds the DC current limit threshold by a small amount. The typical peak current limit can be calculated:

$$I_{\text{PEAK(TYP)}} = I_{\text{LIM}} + \frac{V_{\text{IN}}}{L} \times 100\text{ns}$$

$$I_{\text{LIM}} = 400\text{mA}$$

The higher the input voltage and the lower the inductor value, the greater the peak current.

Soft-Start

All inductive step-up converters exhibit high inrush current during start-up if no special precaution is made. This can cause voltage drops at the input rail during start up and may result in an unwanted or early system shutdown.

The SGM6601 limits this inrush current by increasing the current limit in two steps starting from $I_{\text{LIM}}/3$ for 256 cycles to $I_{\text{LIM}}/2$ for the next 256 cycles, and then full current limit.

Enable

Pulling the enable (EN) to ground shuts down the device reducing the shutdown current to 0.1μA (TYP). Because there is a conductive path from the input to the output through the inductor and Schottky diode, the output voltage is equal to the input voltage during shutdown. The enable pin needs to be terminated and should not be left floating.

Under-Voltage Lockout

An under-voltage lockout prevents misoperation of the device at input voltages below typically 1.5V. When the input voltage is below the under-voltage threshold, the main switch is turned off.

Thermal Shutdown

An internal thermal shutdown is implemented and turns off the internal MOSFETs when the typical junction temperature of 155°C is exceeded. The thermal shutdown has a hysteresis of typically 20°C. This data is based on statistical means and is not tested during the regular mass production of the IC.
APPLICATION INFORMATION

Inductor Selection, Maximum Load Current
Because the PFM peak current control scheme is inherently stable, the inductor value does not affect the stability of the regulator. The selection of the inductor together with the nominal load current, input and output voltage of the application determines the switching frequency of the converter. Depending on the application, inductor values between 2.2μH and 47μH are recommended. The maximum inductor value is determined by the maximum on time of the switch, typically 6μs. The peak current limit of 400mA (TYP) should be reached within this 6μs period for proper operation.

The inductor value determines the maximum switching frequency of the converter. Therefore, select the inductor value that ensures the maximum switching frequency at the converter maximum load current is not exceeded. The maximum switching frequency is calculated by the following formula:

$$f_{S_{\text{MAX}}} = \frac{V_{\text{IN(MIN)}} \times (V_{\text{OUT}} - V_{\text{IN}})}{I_p \times L \times V_{\text{OUT}}}$$

Where:
- I_p = Peak current
- L = Selected inductor value
- $V_{\text{IN(MIN)}}$ = The highest switching frequency occurs at the minimum input voltage

If the selected inductor value does not exceed the maximum switching frequency of the converter, the next step is to calculate the switching frequency at the nominal load current using the following formula:

$$f_{S_{\text{LOAD}}} = \frac{2 \times I_{\text{LOAD}} \times (V_{\text{OUT}} - V_{\text{IN}} + V_d)}{I_p^2 \times L}$$

Where:
- I_p = Peak current
- L = Selected inductor value
- I_{LOAD} = Nominal load current
- V_d = Rectifier diode forward voltage (typically 0.3V)

A smaller inductor value gives a higher converter switching frequency, but lowers the efficiency.

The inductor value has less effect on the maximum available load current and is only of secondary order. The best way to calculate the maximum available load current under certain operating conditions is to estimate the expected converter efficiency at the maximum load current. The maximum load current can then be estimated as follows:

$$I_{\text{LOAD(MAX)}} = \frac{\eta \times I_p^2 \times L \times f_{S_{\text{MAX}}}}{2 \times (V_{\text{OUT}} - V_{\text{IN}})}$$

Where:
- I_p = Peak current
- L = Selected inductor value
- $f_{S_{\text{MAX}}}$ = Maximum switching frequency as calculated previously
- η = Expected converter efficiency. Typically 70% to 85%

The maximum load current of the converter is the current at the operation point where the converter starts to enter the continuous conduction mode. Usually the converter should always operate in discontinuous conduction mode.

Last, the selected inductor should have a saturation current that meets the maximum peak current of the converter.

Another important inductor parameter is the DC resistance. The lower the DC resistance, the higher the efficiency of the converter. See Table 1 and the typical applications for the inductor selection.

Table 1. Recommended Inductor for Typical LCD Bias Supply

<table>
<thead>
<tr>
<th>INDUCTOR</th>
<th>COMPONENT</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μH</td>
<td>Sumida CR32-100</td>
<td>High efficiency</td>
</tr>
<tr>
<td>10μH</td>
<td>Sumida CDRH3D16-100</td>
<td>High efficiency</td>
</tr>
<tr>
<td>10μH</td>
<td>Murata LQH4C100K04</td>
<td>High efficiency</td>
</tr>
<tr>
<td>4.7μH</td>
<td>Sumida CDRH3D16-4R7</td>
<td>Small solution size</td>
</tr>
<tr>
<td>4.7μH</td>
<td>Murata LQH3C4R7M24</td>
<td>Small solution size</td>
</tr>
</tbody>
</table>
APPLICATION INFORMATION

Setting the Output Voltage
The output voltage is calculated as:

\[V_{\text{out}} = 1.229V \times \left(1 + \frac{R_1}{R_2} \right) \]

For battery-powered applications, a high-impedance voltage divider should be used with a typical value for R2 of \(\leq 200k\Omega \) and a maximum value for R1 of 2.2M\(\Omega \). Smaller values might be used to reduce the noise sensitivity of the feedback pin.

A feedforward capacitor across the upper feedback resistor R1 is required to provide sufficient overdrive for the error comparator. Without a feedforward capacitor, or with one whose value is too small, the SGM6601 shows double pulses or a pulse burst instead of single pulse at the switch node (SW), causing higher output voltage ripple. If this higher output voltage ripple is acceptable, the feedforward capacitor can be left out.

The lower the switching frequency of the converter, the larger the feedforward capacitor value required. A good starting point is to use a 10pF feedforward capacitor. As a first estimation, the required value for the feedforward capacitor at the operation point can also be calculated using the following formula:

\[C_{\text{FF}} = \frac{1}{2 \times \pi \times \frac{f_s}{20} \times R_1} \]

Where:
- R1 = Upper resistor of voltage divider
- \(f_s \) = Switching frequency of the converter at the nominal load current (See the Inductor Selection, Maximum Load Current section for calculating the switching frequency)
- \(C_{\text{FF}} \) = Choose a value that comes closest to the result of the calculation

The larger the feedforward capacitor the worse the line regulation of the device. Therefore, when concern for line regulation is paramount, the selected feedforward capacitor should be as small as possible. See the following section for more information about line and load regulation.

Line and Load Regulation
The line regulation of the SGM6601 depends on the voltage ripple on the feedback pin. Usually a 45mV peak-to-peak voltage ripple on the feedback pin FB gives good results. Some applications require a very tight line regulation and can only allow a small change in output voltage over a certain input voltage range. If no feedforward capacitor \(C_{\text{FF}} \) is used across the upper resistor of the voltage feedback divider, the device has the best line regulation. Without the feedforward capacitor the output voltage ripple is higher because the SGM6601 shows output voltage bursts instead of single pulses on the switch pin (SW), increasing the output voltage ripple. Increasing the output capacitor value reduces the output voltage ripple.

If a larger output capacitor value is not an option, a feedforward capacitor \(C_{\text{FF}} \) can be used as described in the previous section. The use of a feedforward capacitor increases the amount of voltage ripple present on the feedback pin (FB). The greater the voltage ripple on the feedback pin (\(\geq 45mV \)), the worse the line regulation.

There are two ways to improve the line regulation further:

1. Use a smaller inductor value to increase the switching frequency which will lower the output voltage ripple, as well as the voltage ripple on the feedback pin.
2. Add a small capacitor from the feedback pin (FB) to ground to reduce the voltage ripple on the feedback pin down to 45mV again. As a starting point, the same capacitor value as selected for the feedforward capacitor \(C_{\text{FF}} \) can be used.
APPLICATION INFORMATION

EN Pin Protection
Power input V_{IN} may exhibit very high voltage spike (> $2 \times V_{IN}$) under certain situations such as hot swap or hot-insertion. In order to prevent SGM6601 from being damaged by high voltage spike and protect EN pin during power-on, when connecting EN to V_{IN}, a pull-up resistor (> $1\, k\Omega$) is recommended to be added between EN and VIN instead of connecting them directly (Figure 1).

Output Capacitor Selection
For best output voltage filtering, a low ESR output capacitor is recommended. Ceramic capacitors have a low ESR value but tantalum capacitors can be used as well, depending on the application.

Assuming the converter does not show double pulses or pulse bursts on the switch node (SW), the output voltage ripple can be calculated as:

$$\Delta V_{OUT} = \frac{I_{OUT}}{C_{OUT}} \times \left(\frac{1}{f_{S(IOUT)}} - \frac{I_p \times L}{V_{OUT} + V_d - V_{IN}}\right) + I_p \times ESR$$

where:
I_p = Peak current
L = Selected inductor value
I_{OUT} = Nominal load current
$f_{S(IOUT)}$ = Switching frequency at the nominal load current as calculated previously
V_d = Rectifier diode forward voltage (typically 0.3 V)
C_{OUT} = Selected output capacitor
ESR = Output capacitor ESR value

Input Capacitor Selection
For good input voltage filtering, low ESR ceramic capacitors are recommended. A 4.7\,μF ceramic input capacitor is sufficient for most of the applications. For better input voltage filtering this value can be increased.

Diode Selection
To achieve high efficiency a Schottky diode should be used. The current rating of the diode should meet the peak current rating of the converter as it is calculated in the Peak Current Control section. Use the maximum value for I_{Lim} for this calculation.

Layout Considerations
Typical for all switching power supplies, the layout is an important step in the design, especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might show noise problems and duty cycle jitter.

The input capacitor should be placed as close as possible to the input pin for good input voltage filtering. The inductor and diode should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits. Because the feedback pin and network is a high-impedance circuit, the feedback network should be routed away from the inductor. The feedback pin and feedback network should be shielded with a ground plane or trace to minimize noise coupling into this circuit.

Wide traces should be used for connections. A star ground connection or ground plane minimizes ground shifts and noise.
PACKAGE OUTLINE DIMENSIONS

TDFN-2x2-6L

RECOMMENDED LAND PATTERN (Unit: mm)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions in Millimeters</th>
<th>Dimensions in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>A</td>
<td>0.700</td>
<td>0.800</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td>A2</td>
<td>0.203 REF</td>
<td>0.008 REF</td>
</tr>
<tr>
<td>D</td>
<td>1.900</td>
<td>2.100</td>
</tr>
<tr>
<td>D1</td>
<td>1.100</td>
<td>1.300</td>
</tr>
<tr>
<td>E</td>
<td>1.900</td>
<td>2.100</td>
</tr>
<tr>
<td>E1</td>
<td>0.600</td>
<td>0.800</td>
</tr>
<tr>
<td>k</td>
<td>0.200 MIN</td>
<td>0.008 MIN</td>
</tr>
<tr>
<td>b</td>
<td>0.180</td>
<td>0.300</td>
</tr>
<tr>
<td>e</td>
<td>0.650 TYP</td>
<td>0.026 TYP</td>
</tr>
<tr>
<td>L</td>
<td>0.250</td>
<td>0.450</td>
</tr>
</tbody>
</table>
PACKAGE OUTLINE DIMENSIONS

TSOT-23-5

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.700 – 0.900</td>
<td>0.028 – 0.035</td>
</tr>
<tr>
<td>A1</td>
<td>0.000 – 0.100</td>
<td>0.000 – 0.004</td>
</tr>
<tr>
<td>A2</td>
<td>0.700 – 0.800</td>
<td>0.028 – 0.031</td>
</tr>
<tr>
<td>b</td>
<td>0.350 – 0.500</td>
<td>0.014 – 0.020</td>
</tr>
<tr>
<td>c</td>
<td>0.080 – 0.200</td>
<td>0.003 – 0.008</td>
</tr>
<tr>
<td>D</td>
<td>2.820 – 3.020</td>
<td>0.111 – 0.119</td>
</tr>
<tr>
<td>E</td>
<td>1.600 – 1.700</td>
<td>0.063 – 0.067</td>
</tr>
<tr>
<td>E1</td>
<td>2.650 – 2.950</td>
<td>0.104 – 0.116</td>
</tr>
<tr>
<td>e</td>
<td>0.950 BSC</td>
<td>0.037 BSC</td>
</tr>
<tr>
<td>e1</td>
<td>1.900 BSC</td>
<td>0.075 BSC</td>
</tr>
<tr>
<td>L</td>
<td>0.300 – 0.600</td>
<td>0.012 – 0.024</td>
</tr>
<tr>
<td>θ</td>
<td>0° – 8°</td>
<td>0° – 8°</td>
</tr>
</tbody>
</table>

RECOMMENDED LAND PATTERN (Unit: mm)

SG Micro Corp
www.sg-micro.com
TAPE AND REEL INFORMATION

KEY PARAMETER LIST OF TAPE AND REEL

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Reel Diameter</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P0 (mm)</th>
<th>P1 (mm)</th>
<th>P2 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDFN-2×2-6L</td>
<td>7”</td>
<td>9.50</td>
<td>2.30</td>
<td>2.30</td>
<td>1.10</td>
<td>4.00</td>
<td>4.00</td>
<td>2.00</td>
<td>8.00</td>
<td>Q1</td>
</tr>
<tr>
<td>TSOT-23-5</td>
<td>7”</td>
<td>9.5</td>
<td>3.17</td>
<td>3.1</td>
<td>1.10</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

NOTE: The picture is only for reference. Please make the object as the standard.
CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

<table>
<thead>
<tr>
<th>Reel Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Pizza/Carton</th>
</tr>
</thead>
<tbody>
<tr>
<td>7" (Option)</td>
<td>368</td>
<td>227</td>
<td>224</td>
<td>8</td>
</tr>
<tr>
<td>7"</td>
<td>442</td>
<td>410</td>
<td>224</td>
<td>18</td>
</tr>
</tbody>
</table>