GENERAL DESCRIPTION

The SGM6603 is a constant frequency, current mode, synchronous step-up switching regulator. Its output currents can go as high as 75mA while using a single-cell alkaline, and discharge it down to 0.9V. It can also be used for generating 5V at 400mA from a 3.3V rail or a Li-Ion battery.

High switching frequency minimizes the sizes of inductor and capacitor. Integrated power MOSFETs and internal compensation make the SGM6603 simple to use and fit the total solution into a compact space.

For light load current, the SGM6603 enters into the power-save mode to maintain high efficiency. Anti-ringing control circuitry reduces EMI concerns by damping the inductor in discontinuous mode. The SGM6603 provides true output disconnect and this allows VOUT to go to zero volt during shutdown without drawing any current from the input source.

The output voltage of SGM6603-ADJ can be programmed by an external resistor divider, and those of SGM6603-3.3/SGM6603-5.0 are fixed internally on the chip. The device is available in SOT-23-6 package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- 90% Efficient Synchronous Boost Converter
- Device Quiescent Current: 30µA (TYP)
- Less than 1µA Shutdown Current
- Input Voltage Range: 0.9V to 5.5V
- 3.3V and 5.0V Fixed Output Voltages
- Adjustable Output Voltage Up to 5.5V
- Output Voltage Clamping: 6V
- Power-Save Mode for Improved Efficiency at Low Output Power
- Load Disconnect During Shutdown
- Over-Temperature Protection
- Available in Green SOT-23-6 Package
- -40°C to +85°C Operating Temperature Range

APPLICATIONS

Single-Cell Li Battery Powered Products
Portable Audio Players
Cellular Phones
Personal Medical Products

TYPICAL APPLICATION

![Figure 1. Typical Application Circuit](image-url)
90% Efficient Synchronous
SGM6603 Step-Up Converter with 1.1A Switch

PACKAGE/ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Vout (V)</th>
<th>PACKAGE DESCRIPTION</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>ORDERING NUMBER</th>
<th>PACKAGE MARKING</th>
<th>PACKING OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGM6603</td>
<td>Adjustable</td>
<td>SOT-23-6</td>
<td>-40°C to +85°C</td>
<td>SGM6603-ADJYN6G/TR</td>
<td>SC8XX</td>
<td>Tape and Reel, 3000</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>SOT-23-6</td>
<td>-40°C to +85°C</td>
<td>SGM6603-3.3YN6G/TR</td>
<td>SC9XX</td>
<td>Tape and Reel, 3000</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>SOT-23-6</td>
<td>-40°C to +85°C</td>
<td>SGM6603-5.0YN6G/TR</td>
<td>SCAXX</td>
<td>Tape and Reel, 3000</td>
</tr>
</tbody>
</table>

NOTE: XX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

MARKING INFORMATION

```
SYY X X
```

- Date code - Month ("A" = Jan, "B" = Feb, ... "L" = Dec.)
- Date code - Year ("A" = 2010, "B" = 2011 ...)
- Chip I.D.

For example: SC8CA (2012, January)

ABSOLUTE MAXIMUM RATINGS

Input Voltage Range on SW, VOUT, VCC, FB, EN
... -0.3V to 6V

Package Thermal Resistance
SOT-23-6, θJA .. 150°C/W
Junction Temperature ...+150°C
Storage Temperature Range-65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C

ESD Susceptibility
HBM... 4000V
MM... 250V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don’t pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.
PIN CONFIGURATION

(TOP VIEW)

1. SW - Boost and Rectifying Switch Input.
2. GND - Ground.
3. EN - Enable Input. (1/VCC enabled, 0/GND disabled)
4. NC - No Connect. It should be left floating. (SGM6603-3.3/SGM6603-5.0)
5. FB - Output Voltage Feedback Pin. Voltage feedback for programming the output voltage. (SGM6603-ADJ)
6. VCC - Boost Converter Supply Voltage.

SGM6603 90% Efficient Synchronous Step-Up Converter with 1.1A Switch
ELECTRICAL CHARACTERISTICS

(For Full = -40°C to +85°C, typical values are at TA = +25°C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>TEMP</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC/DC STAGE</td>
<td>VOUT</td>
<td>Full</td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>VIN</td>
<td>Full</td>
<td>0.9</td>
<td>1.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Input Voltage Range for Start-Up</td>
<td>VIN</td>
<td>+25°C</td>
<td>0.9</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range after Start-Up</td>
<td>VIN</td>
<td>+25°C</td>
<td>1.1</td>
<td>1.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Voltage</td>
<td>VFB</td>
<td>Full</td>
<td>485</td>
<td>500</td>
<td>519</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>f</td>
<td>Full</td>
<td>870</td>
<td>1200</td>
<td>1470</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Switch Current Limit</td>
<td>ISW</td>
<td>Full</td>
<td>0.75</td>
<td>1.1</td>
<td>1.45</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Start-Up Current Limit</td>
<td>+25°C</td>
<td>300</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Switch-On Resistance</td>
<td>VOUT = 3.3V</td>
<td>+25°C</td>
<td>480</td>
<td>mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectifying Switch-On Resistance</td>
<td>VOUT = 3.3V</td>
<td>+25°C</td>
<td>600</td>
<td>mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Accuracy</td>
<td>VCC = 1.2V, I0 = 10mA</td>
<td>Full</td>
<td>3.8</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Regulation</td>
<td>VCC = 0.9V to VOUT - 0.5V, I0 = 10mA</td>
<td>Full</td>
<td>0.1</td>
<td>1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>VCC</td>
<td>+25°C</td>
<td>0.5</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOUT</td>
<td>VEN = VCC = 1.2V, I0 = 0mA</td>
<td>Full</td>
<td>0.1</td>
<td>1</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>VEN = 0V, VCC = 1.2V</td>
<td>+25°C</td>
<td>1</td>
<td>µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL STAGE</td>
<td>VIL</td>
<td>Full</td>
<td>0.12×VCC</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Input Low Voltage</td>
<td>VIL</td>
<td>0.9V ≤ VCC ≤ 1.8V</td>
<td>Full</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>1.8V < VCC ≤ 3.3V</td>
<td>Full</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>3.3V < VCC ≤ 4.2V</td>
<td>Full</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>4.2V < VCC ≤ 5.0V</td>
<td>Full</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Input High Voltage</td>
<td>VIL</td>
<td>Full</td>
<td>0.8×VCC</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>0.9V ≤ VCC ≤ 1.8V</td>
<td>Full</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>1.8V < VCC ≤ 3.3V</td>
<td>Full</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>3.3V < VCC ≤ 4.2V</td>
<td>Full</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>4.2V < VCC ≤ 5.0V</td>
<td>Full</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Input Current</td>
<td>VIL</td>
<td>Clamped on GND or VCC</td>
<td>Full</td>
<td>1</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-Temperature Protection</td>
<td>VIL</td>
<td>Full</td>
<td>150</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-Temperature Hysteresis</td>
<td>VIL</td>
<td>Full</td>
<td>20</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs. Input Voltage

- $I_O = 50mA$
- $I_O = 100mA$
- $I_O = 5mA$

V_{OUT} = 3.3V

Efficiency vs. Input Voltage

- $I_O = 60mA$
- $I_O = 10mA$
- $I_O = 5mA$

V_{OUT} = 5.0V

Output Voltage vs. Output Current

- $V_{CC} = 2.4V$
- $V_{OUT} = 3.3V$

Output Voltage vs. Output Current

- $V_{CC} = 3.6V$
- $V_{OUT} = 5.0V$

Quiescent Current vs. Input Voltage

- $V_{OUT} = 5V$
- $V_{OUT} = 3.3V$

Maximum Output Current vs. Input Voltage

- $V_{OUT} = 2.5V$
- $V_{OUT} = 3.3V$
- $V_{OUT} = 5.0V$
- $V_{OUT} = 5.5V$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Line Transient Response
- AC Coupled
- \(V_{IN} = 1.8\,\text{V to 2.4V}, R_L = 33\,\Omega, V_{OUT} = 3.3\,\text{V} \)
- Time (2ms/div)
- 500mV/div, 100mV/div

Load Transient Response
- AC Coupled
- \(V_{IN} = 1.2\,\text{V}, I_L = 20\,\text{mA to 80mA}, V_{OUT} = 3.3\,\text{V} \)
- Time (2ms/div)
- 50mA/div, 50mV/div

Output Voltage in Continuous Mode
- AC Coupled
- \(V_{IN} = 3.6\,\text{V}, R_L = 25\,\Omega, V_{OUT} = 5\,\text{V} \)
- Time (1μs/div)
- 20mA/div, 20mV/div

Output Voltage in Continuous Mode
- AC Coupled
- \(V_{IN} = 1.2\,\text{V}, R_L = 33\,\Omega, V_{OUT} = 3.3\,\text{V} \)
- Time (1μs/div)
- 100mA/div, 20mV/div
90% Efficient Synchronous SGM6603 Step-Up Converter with 1.1A Switch

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Output Voltage in Discontinuous Mode

Output Voltage in Power-Save Mode

Start-Up after Enable

Start-Up after Enable

Efficiency vs. Output Current

Efficiency vs. Output Current
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

![Efficiency vs. Output Current](chart)

- **Efficiency vs. Output Current**
- **V\textsubscript{CC} = 2.4V**
- **V\textsubscript{CC} = 1.8V**
- **V\textsubscript{CC} = 3.6V**
- **V\textsubscript{OUT} = 5V**

- **0**
- **0.01**
- **0.1**
- **1**
- **10**
- **100**
- **1000**

- **Efficiency (%)**
- **Output Current (mA)**

90% Efficient Synchronous
Step-Up Converter with 1.1A Switch

SG Micro Corp
www.sg-micro.com

FEBRUARY 2018
TYPICAL APPLICATION CIRCUITS

Figure 2. Power Supply Solution for Maximum Output Power Operating from a Single or Dual Alkaline Cell

Figure 3. Power Supply Solution Having Small Total Solution Size

Figure 4. Power Supply Solution for Powering White LEDs in Lighting Applications
TYPICAL APPLICATION CIRCUITS (continued)

Figure 5. Power Supply Solution with Auxiliary Positive Output Voltage

Figure 6. Power Supply Solution with Auxiliary Negative Output Voltage
TYPICAL APPLICATION CIRCUITS (continued)

Figure 7a. Basic Application Circuit for the Fixed Output Versions

Figure 7b. Basic Application Circuit for the Fixed Output Versions
APPLICATION INFORMATION

Design Procedure
The SGM6603 DC/DC converter is intended for systems powered by a single-cell, up to triple-cell alkaline, NiCd, and NiMH battery with a typical terminal voltage between 0.9V and 5.5V. It can also be used in systems powered by one-cell Li-Ion or Li-Polymer with a typical voltage between 2.5V and 4.2V.

Programming Output Voltage
In Figure 1, the output voltage of the SGM6603 DC/DC converter can be adjusted with an external resistor divider. The typical value of the voltage at the FB pin is 500mV. The maximum recommended value for the output voltage is 5.5V. R1 and R2 are calculated using Equation 1:

\[R1 = R2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1 \right) = R2 \times \left(\frac{V_{OUT}}{500mV} - 1 \right) \]

R2 is recommended to be 100kΩ. For example, if an output voltage of 3.3V is needed, a 560kΩ resistor should be chosen for R1.

Inductor Selection
A boost converter normally requires two main passive components for storing energy during the conversion. A boost inductor and a storage capacitor at the output are required. To select the boost inductor, it is recommended to keep the possible peak inductor current below the current limit threshold of the power switch in the chosen configuration. The highest peak current through the inductor and the switch depends on the output load, the input (V_CC), and the output voltage (V_OUT). Estimation of the maximum average inductor current is done using Equation 2:

\[I_L = I_O \times \frac{V_{OUT}}{V_{CC} \times 0.8} \]

For example, for an output current of 75mA at 3.3V, at least an average current of 340mA flows through the inductor at a minimum input voltage of 0.9V.

The second parameter for choosing the inductor is the desired current ripple in the inductor. Normally, it is advisable to work with a ripple of less than 20% of the average inductor current. A smaller ripple reduces the magnetic hysteresis losses in the inductor, as well as output voltage ripple and EMI. But in the same way, regulation time rises at load changes. In addition, a larger inductor increases the total system costs. With these parameters, it is possible to calculate the value for the inductor by using Equation 3:

\[L = \frac{V_{CC} \times (V_{OUT} - V_{CC})}{\Delta I_L \times f \times V_{OUT}} \]

Parameter f is the switching frequency and \(\Delta I_L \) is the ripple current in the inductor. In typical applications, a 4.7µH inductance is recommended. The device has been optimized to operate with inductance values between 2.2µH and 10µH. Nevertheless, operation with higher inductance values may be possible in some applications. Detailed stability analysis is then recommended. Care must be taken because load transients and losses in the circuit can lead to higher currents as estimated in Equation 3. Also, the losses in the inductor which include magnetic hysteresis losses and copper losses are a major parameter for total circuit efficiency.

Input Capacitor
At least a 10µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor or a tantalum capacitor with a 100nF ceramic capacitor in parallel, placed close to the IC, is recommended.
APPLICATION INFORMATION (continued)

Output Capacitor
The major parameter necessary to define the output capacitor is the maximum allowed output voltage ripple of the converter. This ripple is determined by two parameters of the capacitor, the capacitance and the ESR. It is possible to calculate the minimum capacitance needed for the defined ripple, supposing that the ESR is zero, by using Equation 4:

\[C_{\text{MIN}} = \frac{I_o \times (V_{\text{OUT}} - V_{\text{EC}})}{f \times \Delta V \times V_{\text{OUT}}} \]

(4)

Parameter \(f \) is the switching frequency and \(\Delta V \) is the maximum allowed ripple.

With a chosen ripple voltage of 10mV, a minimum capacitance of 4.5\(\mu \)F is needed. In this value range, ceramic capacitors are a good choice. The ESR and the additional ripple created are negligible. It is calculated using Equation 5:

\[\Delta V_{\text{ESR}} = I_o \times R_{\text{ESR}} \]

(5)

The total ripple is the sum of the ripple caused by the capacitance and the ripple caused by the ESR of the capacitor. Additional ripple is caused by load transients. This means that the output capacitor has to completely supply the load during the charging phase of the inductor.

The value of the output capacitance depends on the speed of the load transients and the load current during the load change. With the calculated minimum value of 4.5\(\mu \)F and load transient considerations, the recommended output capacitance value is in the range of 4.7\(\mu \)F to 22\(\mu \)F.

Care must be taken on capacitance loss caused by derating due to the applied DC voltage and the frequency characteristic of the capacitor. For example, larger form factor capacitors (in 1206 size) have their self resonant frequencies in the same frequency range as the SGM6603 operating frequency. So the effective capacitance of the capacitors used may be significantly lower. Therefore, the recommendation is to use smaller capacitors in parallel instead of one larger capacitor.

Layout Considerations
As for all switching power supplies, the layout is an important step in the design, especially at high-peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to the ground pin of the IC.

The feedback divider should be placed as close as possible to the ground pin of the IC. To lay out the control ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current.

Thermal Information
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance follow.

1. Improving the power dissipation capability of the PCB design.
2. Improving the thermal coupling of the component to the PCB.
3. Introducing airflow in the system.
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

FEBRUARY 2018 – REV.A.2 to REV.A.3
Update the Typical Performance Characteristics
Efficiency vs. Input Voltage (VOUT = 3.3V, VOUT = 5.0V) ... 5

APRIL 2015 – REV.A.1 to REV.A.2
Update the Electrical Characteristics
VIH (0.9V ≤ VCC ≤ 1.8V) 1.5V - 0.8VCC .. 4

JANUARY 2015 – REV.A to REV.A.1
Update the Electrical Characteristics
Switch Current Limit ... 4
Add dot on pin 1 SOT-23-6 .. 3, 14

Changes from Original (JANUARY 2013) to REV.A
Changed from product preview to production data .. All
PACKAGE OUTLINE DIMENSIONS

SOT-23-6

SYMBOLS AND DIMENSIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.050 - 1.250</td>
<td>0.041 - 0.049</td>
</tr>
<tr>
<td>A1</td>
<td>0.000 - 0.100</td>
<td>0.000 - 0.004</td>
</tr>
<tr>
<td>A2</td>
<td>1.050 - 1.150</td>
<td>0.041 - 0.045</td>
</tr>
<tr>
<td>b</td>
<td>0.300 - 0.500</td>
<td>0.012 - 0.020</td>
</tr>
<tr>
<td>c</td>
<td>0.100 - 0.200</td>
<td>0.004 - 0.008</td>
</tr>
<tr>
<td>D</td>
<td>2.820 - 3.020</td>
<td>0.111 - 0.119</td>
</tr>
<tr>
<td>E</td>
<td>1.500 - 1.700</td>
<td>0.059 - 0.067</td>
</tr>
<tr>
<td>E1</td>
<td>2.650 - 2.950</td>
<td>0.104 - 0.116</td>
</tr>
<tr>
<td>e</td>
<td>0.950 BSC</td>
<td>0.037 BSC</td>
</tr>
<tr>
<td>e1</td>
<td>1.900 BSC</td>
<td>0.075 BSC</td>
</tr>
<tr>
<td>L</td>
<td>0.300 - 0.600</td>
<td>0.012 - 0.024</td>
</tr>
<tr>
<td>θ</td>
<td>0° - 8°</td>
<td>0° - 8°</td>
</tr>
</tbody>
</table>

RECOMMENDED LAND PATTERN (Unit: mm)

SG Micro Corp
www.sg-micro.com
NOTE: The picture is only for reference. Please make the object as the standard.

Key Parameter List of Tape and Reel

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Reel Diameter</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P0 (mm)</th>
<th>P1 (mm)</th>
<th>P2 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-23-6</td>
<td>7"</td>
<td>9.5</td>
<td>3.17</td>
<td>3.23</td>
<td>1.37</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>
 PACKAGE INFORMATION

CARTON BOX DIMENSIONS

![Carton Box Diagram]

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

<table>
<thead>
<tr>
<th>Reel Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Pizza/Carton</th>
</tr>
</thead>
<tbody>
<tr>
<td>7" (Option)</td>
<td>368</td>
<td>227</td>
<td>224</td>
<td>8</td>
</tr>
<tr>
<td>7"</td>
<td>442</td>
<td>410</td>
<td>224</td>
<td>18</td>
</tr>
</tbody>
</table>